

RTVision Basic

Programming Manual

V1.3.0

1

Contents

Chapter I ZVision Basic Quick Start .. 1

1.1. Linux Motion Controller ... 1

1.1.1. Motion Control Products Introduction ... 1

1.1.2. Products Advantages ... 1

1.2. Development Framework .. 3

1.3. Data Type... 4

1.3.1. ZVOBJECT Type .. 4

1.3.2. ZVOBJECT General Operations .. 5

1.4. Vision Positioning ... 6

1.4.1. Vision Positioning Process .. 6

1.4.2. Calibration Method ... 7

1.5. Commonly Used Commands .. 7

1.6. Applications ... 10

1.6.1. Dispensing .. 10

1.6.2. Laser Marking ... 11

1.6.3. PCB Board Detection .. 12

1.7. Common Problems .. 13

1.7.1. No Camera Scanned ... 13

1.7.2. Blurry Image ... 13

1.7.3. Camera Network ... 13

1.7.4. Abnormal Homing .. 14

1.7.5. Motor Doesn’t Move ... 14

1.7.6. Motor Only Moves in One Single Direction .. 16

Chapter II Environment .. 17

2.1. Environment Description ... 17

2.1.1. Basic Limit .. 17

2.1.2. Image Data Type... 17

2.1.3. ZVOBJECT Type .. 18

2.2. Initialization ... 19

2.2.1. ZV_ENVINIT – Initialization of Running Environment 19

2.3. Performance Mode .. 19

2.3.1. SYSTEM_ZVTASKS – Controller Task Mode .. 19

2.4. General Operations .. 20

2.4.1. ZV_OBJTYPE – Get the Type ... 20

2.4.2. ZV_OBJISEMPTY – Whether is Empty ... 20

2.4.3. ZV_OBJCOPY – Copy Object Data ... 21

2

2.4.4. ZV_OBJCLEAR – Clear ... 21

2.4.5. ZV_OBJDETACH – Detach Quote & Connection 22

2.4.6. ZV_OBJTYPEFILE – Get File ZVOBJECT Variable Type 22

2.4.7. ZV_OBJREAD – Read ZVOBJECT Object ... 23

2.4.8. ZV_OBJWRITE – Save ZVOBJECT Object .. 24

2.4.9. ZINDEX_LABEL – Get Index ... 24

2.4.10. ZINDEX_ZVOBJ – Get Index Data .. 25

2.5. Parameters Related ... 26

2.5.1. Parameters Description ... 26

2.5.1.1. Data Catalogue .. 26

2.5.1.2. Default Data Directory ... 26

2.5.1.3. List Parameter Name ... 27

2.5.1.4. List Parameter Information.. 27

2.5.1.5. All Parameters Resume Default Values 27

2.5.1.6. Grab Timeout ... 28

2.5.1.7. Image Getting Timeout .. 28

2.5.1.8. Shape Template Creating Level ... 28

2.5.1.9. Shape Template Creating Timeout .. 29

2.5.1.10. Shape Template Matching Timeout .. 29

2.5.1.11. NCC Template Creating Timeout ... 29

2.5.1.12. NCC Template Matching Timeout ... 29

2.5.1.13. Image Distortion Correction Mode .. 30

2.5.1.14. Line ... 30

2.5.1.15. Line Width .. 30

2.5.1.16. Graphic Drawing Fill ... 31

2.5.1.17. Text Drawing Fill .. 31

2.5.1.18. Text Drawing Base Position ... 31

2.5.1.19. Whether Shape Matching Allows Exceeding Border 32

2.5.1.20. Shape Matching Expansion Interface .. 32

2.5.1.21. Measurement Threshold Mode ... 32

2.5.1.22. Minimum Measured Gradient Threshold 33

2.5.1.23. Maximal Camera Numbers .. 33

2.5.1.24. Image Maximal Dimension .. 33

2.5.1.25. Image Maximal Channel Numbers .. 34

2.5.1.26. Image / Matrix Maximal Size ... 34

2.5.1.27. Version No. ... 34

2.5.1.28. Hardware Platform ... 34

2.5.2. Parameters Reading & Writing ... 35

2.5.2.1. ZV_SETSYSINT – Integer Type Setting 35

2.5.2.2. ZV_GETSYSINT – Integer Type Reading 35

2.5.2.3. ZV_SETSYSDBL – Floating Type Setting 35

2.5.2.4. ZV_GETSYSDBL – Floating Type Reading 36

2.5.2.5. ZV_SETSYSSTR – Character String Type Setting 36

2.5.2.6. ZV_GETSYSSTR – Character String Type Reading 37

3

2.6. Error Processing .. 38

2.6.1. ZV_LASTERR – Error Code of Last Time .. 38

2.6.2. ZV_RUNERR – Error Code when Running .. 38

2.6.3. ZV_RUNERRSTR – Running Error Code Information Description........ 39

Chapter III File Operation ... 40

3.1. Matrix ... 40

3.1.1. ZV_READMATRIX – Reading .. 40

3.1.2. ZV_WRITEMATRIX – Storage ... 40

3.2. Image ... 41

3.2.1. ZV_READIMAGE – Image Reading ... 41

3.2.2. ZV_WRITEIMAGE – Image Storage .. 42

3.3. Region .. 43

3.3.1. ZV_READREGION – Read Region ... 43

3.3.2. ZV_WRITEREGION – Save Region .. 43

3.4. Template .. 44

3.4.1. ZV_READNCCMOD – NCC Mode Reading .. 44

3.4.2. ZV_WRITENCCMOD – NCC Mode Storage ... 44

3.4.3. ZV_READSHAPEMOD – Shape Mode Reading 45

3.4.4. ZV_WRITESHAPEMODE – Shape Mode Storage 45

3.5. Calibration .. 46

3.5.1. ZV_CALREAD – Calibration Parameters Reading 46

3.5.2. ZV_CALWRITE – Calibration Parameters Storage 46

3.6. Color ... 47

3.6.1. ZV_CLRMODREAD – Color Mode Reading ... 47

3.6.2. ZV_CLRMODWRITE – Color Mode Storage .. 48

3.7. OCR .. 48

3.7.1. ZV_OCRREADSVM – SVM Classifier Reading 48

3.7.2. ZV_OCRWRITESVM – SVM Classifier Storage 49

3.7.3. ZV_OCRREADMLP – MLP Classifier Reading 49

3.7.4. ZV_OCRWRITEMLP – MLP Classifier Storage 50

3.8. Contour .. 50

3.8.1. ZV_CONTREAD – Contour Reading .. 50

3.8.2. ZV_CONTWRITE – Contour Storage ... 51

3.9. List ... 51

3.9.1. ZV_LISTREAD – List Reading ... 51

3.9.2. ZV_LISTWRITE – List Storage .. 52

3.10. Compression Package ... 52

3.10.1. PACK – File / Directory Packing & Compressing 52

3.10.2. UNPACK – Packed File Decompressing .. 53

Chapter IV Matrix ... 55

4.1. Generate the Matrix ... 55

4.1.1. ZV_MATGENCONST – Constant Creating .. 55

4.1.2. ZV_MATGENEYE – Size of Matrix .. 55

4.1.3. ZV_MATGENDATA – Data Creating .. 56

4

4.2. Basic Parameters .. 57

4.2.1. ZV_MATINFO – Basic Information ... 57

4.2.2. ZV_MATISVALID – Whether is Valid ... 57

4.2.3. ZV_MATROWS – Get Rows of Matrix ... 58

4.2.4. ZV_MATCOLS – Get Columns of Matrix ... 58

4.3. Matrix Operation .. 59

4.3.1. ZV_TRANSPOSE – Transpose .. 59

4.3.2. ZV_INVERT – Inverse Matrix .. 60

4.3.3. ZV_MATRIXMULT – Matrix Multiple ... 60

4.4. Access .. 61

4.4.1. ZV_MATGETVAL – Get the Value ... 61

4.4.2. ZV_MATSETVAL – Set the Value .. 62

4.4.3. ZV_MATGETROW – Get One Row ... 63

4.4.4. ZV_MATSETROW – Set the Row .. 63

4.4.5. ZV_MATGETCOL – Get One Column .. 64

4.4.6. ZV_MATSETCOL – Set the Col ... 65

4.4.7. ZV_MATGETRANGE – Get Sub-Region Value 65

4.4.8. ZV_MATSETRANGE – Set Sub-Region Value 66

4.4.9. ZV_MATGETSUB – Get Sub-Region Matrix ... 67

4.4.10. ZV_MATSETSUB – Set Sub-Region ... 68

4.4.11. ZV_MATSETCONST – Constant Filling .. 68

4.4.12. ZV_MATCOPY – Copy .. 69

4.4.13. ZV_MATSORT – Sorting ... 70

4.5. Transformation .. 71

4.5.1. ZV_MATRESHAPE – Adjust Rows & Columns 71

Chapter V Image .. 72

5.1. Image Generation .. 72

5.1.1. ZV_IMAGECONST – Image Generating from Data 72

5.1.2. ZV_IMGTILE – Image Combination .. 73

5.2. Image Acquisition .. 74

5.2.1. Camera Scanning ... 74

5.2.1.1. CAM_SCAN – Scan All Cameras .. 74

5.2.1.2. CAM_COUNT – Camera Numbers ... 75

5.2.1.3. CAM_LISTLIB – Get Camera Library Type that are Loaded 76

5.2.1.4. CAM_FINDLIB – Get Available Camera Library Type 76

5.2.1.5. CAM_QUERYLIB – Check Camera Library Information 77

5.2.2. Camera Using ... 78

5.2.2.1. CAM_SEL – Select Acquisition Devices 78

5.2.2.2. CAM_GETINFO – Camera Information .. 79

5.2.2.3. CAM_GRAB – Grab One Frame .. 80

5.2.2.4. CAM_SETMODE – Set Trigger Mode ... 81

5.2.2.5. CAM_TRIGGER – Camera Soft Trigger .. 82

5.2.2.6. CAM_STRAT – Start to Capture ... 83

5.2.2.7. CAM_STOP – Stop Acquisition .. 83

5

5.2.2.8. CAM_GET – Get the Image .. 84

5.2.3. Camera Parameters ... 87

5.2.3.1. CAM_GETEXPOSURE – Get Exposure Time 87

5.2.3.2. CAM_SETEXPOSURE – Set Exposure Time 88

5.2.3.3. CAM_GETPARAM – Get Parameters.. 88

5.2.3.4. CAM_SETPARAM – Set Parameters .. 91

5.2.3.5. CAM_GETPARAMTYPE – Get Parameters Types 92

5.2.3.6. CAM_GETPARAMMODE – Get Parameters Access Mode........... 93

5.2.3.7. CAM_LOADCONFIG – Load Configured Parameters/Files 93

5.2.3.8. CAM_SAVECONFIG – Save Configured Parameters/Files 94

5.2.3.9. CAM_DATASIZE – Image Data Size ... 95

5.3. Image Showing .. 95

5.3.1. Latch ... 95

5.3.1.1. ZV_LATCH – Latch Showing Image ... 95

5.3.1.2. ZV_LATCHINFO – Get Latch Information 96

5.3.1.3. ZV_LATCHRANS – Latch Image Transformation 98

5.3.1.4. ZV_LATCHCLEAR – Latch Data Clearing 100

5.3.1.5. ZV_LATCHSETSIZE – Set Latch Image Size 100

5.3.1.6. ZV_LATCHSETBGC – Set Latch Background Color 101

5.3.2. Coordinates Conversion of Image & HMI ... 102

5.3.2.1. ZV_POSTOIMG – From HMI Control to Image Coordinate 102

5.3.2.2. ZV_POSFROMIMG – From Image to HMI Control Coordinates. 103

5.3.2.3. ZV_LENTOIMG – From HMI Control to Image Length 104

5.3.2.4. ZV_LENFROMIMG – From Image to HMI Control Length 105

5.3.3. HMI ... 106

5.3.3.1. ZV_HMIADJRECT – Adjust Rectangle ROI 106

5.3.3.2. ZV_HMIADJRECT2 – Adjust Rotate Rectangle ROI 108

5.3.3.3. ZV_HMIADJRECT2S – Adjust Rotate Rectangle ROI (Single Side)

 110

5.3.3.4. ZV_HMIADJARC – Adjust Arc ROI ... 112

5.3.3.5. ZV_HMIRECT2 – From Rotate Rectangle ROI to HMI Drawing

Primitives ... 114

5.3.3.6. ZV_HMIARC – From Arc ROI to HMI Drawing Primitives 117

5.3.4. Custom Control Drawing .. 120

5.3.4.1. DRAWZVOBJ – HMI Custom Control Drawing 120

5.4. Basic Parameters .. 122

5.4.1. ZV_IMAGEFOR – Basic Information ... 122

5.4.2. ZV_IMGISVALID – Whether the Image is Valid 122

5.4.3. ZV_IMGWIDTH – Get Image Width ... 123

5.4.4. ZV_IMGHEIGHT – Get Image Height .. 124

5.4.5. ZV_IMGCNS – Get Image Channels ... 124

5.5. Access .. 125

5.5.1. ZV_IMGGETVAL – Get the Value .. 125

5.5.2. ZV_IMGSETVAL – Modify the Value ... 126

6

5.5.3. ZV_IMGGETELEM – Get Pixel Value ... 127

5.5.4. ZV_IMGSETELEM – Modify the Pixel Value 128

5.5.5. ZV_IMGGETSUB – Get Sub-Region ... 129

5.5.6. ZV_IMGSETSUB – Modify the Sub-Region .. 130

5.5.7. ZV_IMGSETCONST – Fill Constant Image ... 131

5.5.8. ZV_IMGCONVERT – Convert Specified Data Type 131

5.5.9. ZV_IMGCOPY – Copy ... 132

5.5.10. ZV_IMGSPLIT2 – Split Dual-Channel .. 133

5.5.11. ZV_IMGSPLIT3 – Split Three-Channel .. 133

5.5.12. ZV_IMGSPLIT4 – Split Four-Channel .. 134

5.5.13. ZV_IMGMERGE2 – Merge Dual-Channel ... 135

5.5.14. ZV_IMGMERGE3 – Merge Three-Channel ... 135

5.5.15. ZV_IMGMERGE4 – Merge Four-Channel ... 136

5.5.16. ZV_IMGGETCN – Get Image in Specified Channel 137

5.6. Operation ... 138

5.6.1. Algebra .. 138

5.6.1.1. ZV_SCALE -- Grayscale Extension .. 138

5.6.1.2. ZV_ABSDIFF -- Absolute Difference .. 139

5.6.1.3. ZV_ADDWEIGHTED -- Weighted Sum .. 139

5.6.1.4. ZV_MUL -- Multiple .. 140

5.6.1.5. ZV_DIV -- Divide .. 141

5.6.1.6. ZV_MAX – Maximum Value ... 141

5.6.1.7. ZV_MIN – Minimal Value ... 142

5.6.1.8. ZV_COMPARE – Comparison ... 143

5.6.1.9. ZV_NORM – Norm.. 144

5.6.2. Image Logic Operation ... 144

5.6.2.1. ZV_AND – Bitwise And... 144

5.6.2.2. ZV_OR – Bitwise Or .. 145

5.6.2.3. ZV_NOT – Bitwise Not ... 146

5.6.2.4. ZV_XOR – Bitwise Exclusive OR .. 147

5.6.3. Statistics ... 148

5.6.3.1. ZV_NONZEROCOUNT – Non 0 Element Numbers 148

5.6.3.2. ZV_SUM – Sum for Elements .. 149

5.6.3.3. ZV_STATROW – Row Element Statistic 149

5.6.3.4. ZV_STATCOL – Column Element Statistic 150

5.6.3.5. ZV_MEAN – Average Value .. 150

5.6.3.6. ZV_MEANSDEV – Average Value and Standard Deviation 151

5.6.3.7. ZV_MINMAXLOC – Location of Minimal & Maximum 151

5.6.3.8. ZV_HIST -- Histogram ... 152

5.7. Preprocessing .. 153

5.7.1. Color ... 153

5.7.1.1. ZV_RGBTOGRAY – From RGB To Grayscale 153

5.7.1.2. ZV_GRAYTORGB – From Grayscale To RGB 154

5.7.1.3. ZV_COLORTORGB – From Other Colors To RGB 154

7

5.7.1.4. ZV_RGBTOCOLOR – From RGB To Other Colors 155

5.7.1.5. ZV_BAYERTORGB – From Bayer To RGB 156

5.7.2. Geometric Transformation ... 156

5.7.2.1. ZV_MIRROR – Mirror .. 156

5.7.2.2. ZV_ROTATE – Rotation .. 158

5.7.2.3. ZV_ZOOM – Scale Factor Zooming ... 160

5.7.2.4. ZV_RESIZE – Target Size Zooming .. 161

5.7.2.5. ZV_AFFINE – Image Affine Transformation 162

5.7.2.6. ZV_WRAPRECT2 – Capture Rotated Rectangle Image 164

5.7.2.7. ZV_WRAPRING – Capture Ring Image 164

5.7.3. Filtering ... 165

5.7.3.1. ZV_MEDIANBLUR – Media Filtering .. 166

5.7.3.2. ZV_MEANBLUR – Mean Filtering ... 167

5.7.3.3. ZV_GAUSSBLUR – Gaussian Filtering 168

5.7.3.4. ZV_BILATERALFLR – Bilateral Filtering 169

5.7.3.5. ZV_SCHARR – SCHARR Filtering ... 169

5.7.3.6. ZV_SOBEL – Sobel Edge Detection ... 170

5.7.3.7. ZV_LAPLACE – Laplacian Edge Detection 171

5.7.3.8. ZV_CANNY – CANNY Edge Detection .. 172

5.7.3.9. ZV_GRADIENT – Gradient Calculation 174

5.7.4. Frequency Domain Processing .. 175

5.7.4.1. ZV_DFT -- Fourier Transform .. 175

5.7.4.2. ZV_IDFT – Inverse Fourier Transform 175

5.7.4.3. ZV_MULSPECTRUM – Multiple Spectrum 176

5.7.4.4. ZV_GENGAUSSFILTER – Gaussian Filter 176

5.7.4.5. ZV_GENLPFILTER – Ideal Lowpass Filter 177

5.7.4.6. ZV_GENHPFILTER – Ideal High Pass Filter 177

5.7.4.7. ZV_LPFILTER – Gaussian Lowpass Filter 178

5.7.4.8. ZV_HPFILTER – Gaussian High-Pass Filter 178

5.7.5. Morphology .. 179

5.7.5.1. ZV_ERODE – Erosion .. 179

5.7.5.2. ZV_DILATE – Expansion .. 180

5.7.5.3. ZV_OPENING – Opening Operation ... 181

5.7.5.4. ZV_CLOSING – Closing Operation ... 182

5.7.5.5. ZV_MORPHSE – Custom Structural Element 183

5.7.5.6. ZV_MORPH – Custom Morphology ... 184

5.7.6. Image Enhancement ... 185

5.7.6.1. ZV_HISTEQ – Histogram Equalization 185

5.7.6.2. ZV_REVERSE – Image Inversion .. 186

5.7.6.3. ZV_GAMMATRANS – Gamma Transformation 187

5.7.6.4. ZV_LIGHTCOMPENSATION – Light Compensation 188

5.7.6.5. ZV_SHADECORRECT -- Shadow Correction 189

5.7.6.6. ZV_GRAYSTRETCH – Grayscale Stretch 190

5.7.6.7. ZV_NORMALIZE – Image Normalization 191

8

5.7.6.8. ZV_EMPHASIZE – Emphasize Image .. 192

5.7.6.9. ZV_DOTSIMAGE – Image Dot Enhanced 192

5.7.7. Binarization .. 193

5.7.7.1. ZV_THRESH – Binarization .. 193

5.7.7.2. ZV_ADPTHRESH – Adaptive Binarization 194

5.7.7.3. ZV_AUTOTHRESH – Automatic Binarization............................. 196

Chapter VI Matching .. 197

6.1. Shape Matching ... 197

6.1.1. ZV_MCCREATESHAPE – Create the Template 197

6.1.2. ZV_MCCREATESHAPESCALE – Create Scaling Template 200

6.1.3. ZV_MCFINDSHAPE – Matching ... 204

6.1.4. ZV_MCFINDSHAPESTATE – Match & Output Contour State 207

6.1.5. ZV_MCFINDSHAPERE – Match Supported Area 211

6.1.6. ZV_MCFINDSHAPERESTATE – Match Supported Region & Output

Contour State .. 213

6.1.7. ZV_MCFINDSHAPES – Multiple Template Matching 216

6.1.8. ZV_MCFINDSHAPESSTATE – Multi-Template Matching & Contour

State Outputting .. 218

6.1.9. ZV_MCFINDSHAPESRE – Multiple Templates Match Supported Region

 219

6.1.10. ZV_MCFINDSHAPESRESTATE – Match Multi-Template Supported

Region & Output Contour State ... 221

6.1.11. ZV_MCSHAPECONTLIST – Get Template Contour 223

6.1.12. ZV_SHAPECREATE – Use Image to Create Template 223

6.1.13. ZV_SHAPECREATERE – Use Region to Create Template 226

6.1.14. ZV_SHAPEFIND – Matching .. 231

6.1.15. ZV_SHAPEFINDST – Match & Output Contour State 233

6.1.16. ZV_SHAPEFINDS – Multi-Template Matching 236

6.1.17. ZV_SHAPEFINDSST – Multi-Template Matching & Contour State

Outputting ... 239

6.1.18. ZV_SHAPECONTOURS – Get Template Contour 242

6.1.19. ZV_SHAPETEMPL – Get Template Image ... 242

6.1.20. ZV_SHAPEREGION – Get Template Region 243

6.1.21. ZV_SHAPETEMPSIZE – Get Template Image Size 244

6.1.22. ZV_SHAPEPARAM – Get Template Parameters 244

6.1.23. ZV_SHAPEDEFPARAM – Get Template Default Parameters 245

6.2. NCC Matching .. 246

6.2.1. ZV_NCCCREATERE – Create ... 246

6.2.2. ZV_NCCFIND – Match .. 247

6.2.3. ZV_NCCTEMPL – Get Template Image .. 249

6.2.4. ZV_NCCREGION – Get Template Region .. 249

6.2.5. ZV_NCCPARAM – Get Template Parameters 250

6.3. Grayscale Matching ... 251

6.3.1. ZV_FASHTEMPL – Fast to Match .. 251

9

6.3.2. ZV_BESTTEMPL – Match Grayscale Template 252

6.3.3. ZV_MULTITEMPL – Match Grayscale Template 253

Chapter VII Measurement .. 256

7.1. Measurer Generation ... 256

7.1.1. ZV_MRGENRECT – Generate Rectangle Measurer 256

7.1.2. ZV_MRGENRECT2 – Generate Rotate Rectangle Measurer 256

7.1.3. ZV_MRGENARC – Generate Arc Measurer ... 257

7.2. Single Area Measurement ... 258

7.2.1. ZV_MRPROJECTION – Grayscale Projection 258

7.2.2. ZV_MRPOS – Detect Point ... 259

7.2.3. ZV_MRPAIRS – Detect Point-Pair .. 261

7.2.4. ZV_MRPEAK – Detect Peak Point .. 263

7.2.5. ZV_MRSIZE –Measurement Area Size Trends 264

7.3. Segment Region Generation & Measurement ... 265

7.3.1. ZV_MRGENLINE – Line Measurement ... 265

7.3.2. ZV_MRGENCIRCLE – Circle Measurement .. 267

7.3.3. ZV_MRSETADV – Advanced Parameters Setting of Segment

Measurement Region .. 268

7.3.4. ZV_MRGETADV – Advanced Parameters Reading of Segment

Measurement Region .. 269

7.3.5. ZV_MREDGE – Measure Point of Segment Area 270

7.3.6. ZV_MRLINE – Line .. 270

7.3.7. ZV_MRCIRCLE – Circle ... 271

7.4. Measurer ROI ... 273

7.4.1. ZV_MRGETROI – Get Measurer ROI & Segment Parameters 273

7.5. Transformation .. 273

7.5.1. ZV_MRCORRECT – Measurement Area Correction 273

Chapter VIII Region .. 275

8.1. Region Generation ... 275

8.1.1. ZV_REGENLINE – Line .. 275

8.1.2. ZV_REGENRECT – Rectangle ... 275

8.1.3. ZV_REGENRECT2 – Rectangle with Angle ... 276

8.1.4. ZV_REGENCIRCLE – Circle ... 277

8.1.5. ZV_REGENANNULAR – Annular ... 277

8.1.6. ZV_REGENSECTOR – Sector .. 278

8.1.7. ZV_REGENPOLYGON – Polygon ... 279

8.1.8. ZV_REGENFULLIMG – Full Area ... 279

8.2. Region Binarization ... 280

8.2.1. ZV_RETHRESH – Region Binarization.. 280

8.2.2. ZV_RETHRESH – Region Binarization.. 280

8.2.3. ZV_REAUTOTHRESH – Auto-Binarization ... 281

8.2.4. ZV_RETOIMG – Convert Region to Binarization 282

8.3. Region Clip ... 283

8.3.1. ZV_RECLIP – Clip Region ... 283

10

8.4. Region Operation ... 284

8.4.1. ZV_REITSEC – Intersection .. 284

8.4.2. ZV_REUNION – Union ... 285

8.4.3. ZV_REDIFF – Difference Set ... 285

8.4.4. ZV_RECONNECT – Connection Area .. 286

8.4.5. ZV_REUNIONLIST – Merge .. 287

8.4.6. ZV_REFILLUP – Hole Filling ... 287

8.4.7. ZV_REBOUNDARY – Boundary .. 289

8.4.8. ZV_REDISTTRANS – Region Distance Image 290

8.4.9. ZV_RESKELETON – Skeletonization .. 291

8.4.10. ZV_RESKELETONJUNCT – Area endpoints and intersections 292

8.5. Morphology .. 294

8.5.1. ZV_REDILATE – Rectangle Expansion ... 294

8.5.2. ZV_REDILATECIRCLE – Circle Expansion .. 295

8.5.3. ZV_REERODE – Rectangle Erosion .. 296

8.5.4. ZV_REERODECIRCLE – Circle Erosion .. 297

8.5.5. ZV_REOPENING – Rectangle Opening Operation 298

8.5.6. ZV_REOPENCIRCLE – Circle Opening Operation 299

8.5.7. ZV_RECLOSECIRCLE – Circle Closing Operation 300

8.5.8. ZV_RECLOSING – Rectangle Closing Operation 301

8.5.9. ZV_REMORPH – Region Morphology ... 302

8.6. Feature ... 304

8.6.1. ZV_RERUNSNUM – Travel Numbers .. 304

8.6.2. ZV_RERUNS – Get Travel ... 305

8.6.3. ZV_RECONNECTCNT – The Number of Connected Aeras 306

8.6.4. ZV_REAREA – Area (Square) .. 307

8.6.5. ZV_REHOLESCNT – The Number of Holes .. 308

8.6.6. ZV_REHOLESAREA – The Aera of Holes .. 308

8.6.7. ZV_REAREACENTER – Region Area & Position 309

8.6.8. ZV_RECONTLENGTH – Length ... 310

8.6.9. ZV_REORIENT – Angle ... 311

8.6.10. ZV_REELLIPAXIS – Ellipse Axis Parameters 312

8.6.11. ZV_RERECT – External Rectangle .. 313

8.6.12. ZV_RERECT2 – Minimal External Rectangle 315

8.6.13. ZV_RECIRCLE – External Circle .. 316

8.6.14. ZV_REINNERCIRCLE – Inner Circle .. 317

8.6.15. ZV_RECCLTY – Circularity .. 318

8.6.16. ZV_RECONVEXITY – Convexity .. 319

8.6.17. ZV_RECMPTNS – Compactness .. 320

8.6.18. ZV_RERECTLTY – Rectangularity... 321

8.6.19. ZV_REECCENTRICITY – Shape Parameter .. 322

8.6.20. ZV_REMOM2INVAR – Invariant 2rd Moment 323

8.6.21. ZV_REMOM3INVAR – Invariant 3st Moment 324

8.6.22. ZV_REMOMCENTRA – Center Moment ... 324

11

8.7. Transformation .. 325

8.7.1. ZV_RESORT – Sorting .. 325

8.7.2. ZV_REFILTER – Filtering ... 327

8.7.3. ZV_REGETPTS – Region Point Set ... 328

8.7.4. ZV_RESHAPETRANS – Region Transformation 328

8.7.5. ZV_REAFFINE – Region Affine Transformation 330

Chapter VIIII Color.. 331

9.1. ZV_CLRGENMODEL – Generate Color Model .. 331

9.2. ZV_CLRGENMODELRE – Generate Color Model 332

9.3. ZV_CLRGETMODELPARAM – Get Color Model Parameters 333

9.4. ZV_CLRMODELTHRESH – Color Binarization .. 333

9.5. ZV_CLRMODELCLASSIFY – Color Classification Recognition 335

Chapter X Contour ... 337

10.1. Contour .. 338

10.1.1. ZV_CONTGEN – Generate Contour .. 338

10.1.2. ZV_CONTGENEX – Generate Contour .. 339

10.1.3. ZV_CONTGENSUBPIX– Sub-Pixel Contour 340

10.1.4. ZV_CONTGAUSSIAN– Contour Gaussian Smoothing 342

10.1.5. ZV_CONTAPPROXPOLY – Polygon Approximation 343

10.1.6. ZV_CONTGENPARALLEL – Generate Parallel Contour 344

10.1.7. ZV_CONTSETMAXRADIUS – Set Max Arc Radius 346

10.1.8. ZV_CONTSEGMENT – Contour Segment ... 346

10.1.9. ZV_CONTGETPARAM – Contour Primitive Geometric Parameters ... 348

10.1.10. ZV_CONTUNIONADJ -- Neighbor Contour Connection 349

10.1.11. ZV_CONTCLOSE – Close Contour .. 350

10.1.12. ZV_CONTCLOSEEX – Close Contour .. 351

10.2. Access .. 352

10.2.1. ZV_CONTCOUNT – Contour Numbers ... 352

10.2.2. ZV_CONTGETPT – Contour Point Traversal 353

10.3. Geometric Analysis .. 354

10.3.1. ZV_CONTRECT – External Rectangle ... 354

10.3.2. ZV_CONTRECT2 – Minimal External Rectangle................................. 355

10.3.3. ZV_CONTELLIPAXIS – Feature Ellipse Parameters 356

10.3.4. ZV_CONTCIRCLE – External Circle ... 357

10.4. Feature ... 358

10.4.1. ZV_CONTAREA – Area (Spare) ... 358

10.4.2. ZV_CONTLENGTH – Perimeter .. 359

10.4.3. ZV_CONTCENTER – Center of Gravity ... 360

10.4.4. ZV_CONTISCONVEX – Convex ... 361

10.4.5. ZV_CONTCONVEXITY – Convexity... 362

10.4.6. ZV_CONTCCLTY – Circularity ... 363

10.4.7. ZV_CONTCMPTNS – Compactness ... 364

10.4.8. ZV_CONTRECTLY – Rectangularity ... 365

10.4.9. ZV_CONTHULLAREA – Hull Area ... 366

12

10.4.10. ZV_CONTDIRECT – Contour Direction ... 367

10.4.11. ZV_CONTORIENT – Contour Orientation ... 367

10.5. Transformation .. 368

10.5.1. ZV_CONTREVERSE – Contour Reverse .. 368

10.5.2. ZV_CONTSORT – Sorting ... 369

10.5.3. ZV_CONTFILTER -- Filter .. 370

10.5.4. ZV_CONTAFFINE – Contour / Contour List Affine Transformation ... 371

Chapter XI Recognition .. 373

11.1. Data Code .. 373

11.1.1. ZV_CODEMASKBAR – Mask of Manufacture Bar Code Type 373

11.1.2. ZV_CODEREAD – Read Data Code ... 374

11.1.3. ZV_CODESTR – Get Data Code Result ... 378

11.1.4. ZV_CODESTR – Get Data Code Type ... 378

11.1.5. ZV_CODETYPESTR – Get Data Code Type .. 379

11.1.6. ZV_CODEPOS – Get Data Code Position ... 380

11.2. OCR .. 381

11.2.1. ZV_OCRSEGSETPARAM – Set Segment Parameters 381

11.2.2. ZV_OCRSEGCHAR – Character Segment ... 382

11.2.3. ZV_OCRSAMPLEAPP – Generate Training Sample 383

11.2.4. ZV_OCRCREATESVM – Create SVM Classifier 384

11.2.5. ZV_OCRTRAINSVM – Train SVM Classifier 384

11.2.6. ZV_OCRCLASSIFYSVM – SVM Classification Recognition 385

11.2.7. ZV_OCRCREATEMLP – Create MLP Classifier 386

11.2.8. ZV_OCRTRAINMLP – Train MLP Classifier .. 386

11.2.9. ZV_OCRCLASSIFYMLP – MLP Classification Recognition 387

11.2.10. ZV_OCRSAMPLEDEL – Delete Sample .. 388

11.2.11. ZV_OCRSAMPLECOUNT – Get Sample Numbers............................ 389

11.2.12. ZV_OCRSAMPLEIMG – Get Sample Image 390

11.2.13. ZV_OCRSAMPLENAME – Get Sample Name 390

11.2.14. ZV_OCRCLASSCOUNT – Get Classification Numbers..................... 391

11.2.15. ZV_OCRCLASSTONAME – Get Class Name of Specified No. 392

11.2.16. ZV_OCRCLASSTOID – Get No. of Classified Name 393

11.2.17. ZV_OCRSAMPLERECT2 – Get Sample Rectangle 394

Chapter XII List .. 395

12.1. Access .. 396

12.1.1. ZV_LISTCOUNT – Element Numbers ... 396

12.1.2. ZV_LISTCOUNT – Element Numbers ... 396

12.2. Insert & Delete.. 397

12.2.1. ZV_LISTINSERT – Insert Element .. 397

12.2.2. ZV_LISTDELETE – Delete Element ... 397

12.2.3. ZV_LISTEXTEND – Extend Element ... 398

12.2.4. ZV_LISTREPLACE – Replace Element ... 398

12.2.5. ZV_LISTSLICE – Slice Element .. 399

Chapter XIII Tool .. 400

13

13.1. Geometry ... 400

13.1.1. ZV_DISTPP – Distance of Point and Point .. 400

13.1.2. ZV_DISTPL – Distance of Point and Line .. 400

13.1.3. ZV_DISTPS – Distance of Point and Segment 401

13.1.4. ZV_DISTSL – Distance of Segment and Line 401

13.1.5. ZV_DISTSS – Distance of Segment and Segment 402

13.1.6. ZV_DISTCONTP – Min Distance of Point and Contour...................... 403

13.1.7. ZV_DISTCONTPEX – Min Distance of Point and Contour 404

13.1.8. ZV_DISTCONT – Min Distance of Two Contours 404

13.1.9. ZV_INTERSECTLL – Straight Line Intersection 405

13.1.10. ZV_INTERSECTSS – Segment Intersection Point 406

13.1.11. ZV_PROJECTPL – Projection of Point on the Straight Line 407

13.1.12. ZV_PROJECTPC – Projection of Point and Circle 408

13.1.13. ZV_PROJECTPE – Projection of Point and Ellipse........................... 408

13.1.14. ZV_RECT2VERTEX – Rotate Rectangular Vertex 409

13.1.15. ZV_INTERSECTRECT2 – Vertex of Rotate Rectangle Intersection Area

 409

13.1.16. ZV_ANGLELL – Straight Line Angle ... 410

13.1.17. ZV_ANGLELX – Angle of Line and Horizontal Axis 411

13.1.18. ZV_ANGLEBISECT – Angle Bisector .. 411

13.1.19. ZV_LINETOPARAM – From Line to Parameters 412

13.1.20. ZV_LINEFROMPARAM – Parameters Construct Line 413

13.1.21. ZV_FITLINE – Line Fitting .. 413

13.1.22. ZV_FITPOLYN – Polynomial Fitting ... 414

13.1.23. ZV_ROTATEPOINT – Rotate Point.. 415

13.1.24. ZV_PTSDIRECT – Calculate Direction of 3 Points 415

13.1.25. ZV_RECT2INSIZE – Whether Rectangle’s Vertex Are in Range 416

13.1.26. ZV_HOUGHLINE -- Hough Find Line .. 417

13.1.27. ZV_HOUGCIRCLE -- Hough Find Circle .. 418

13.1.28. ZV_GENCIRCLE – Make One Circle By 3 Points............................... 420

13.1.29. ZV_FITCIRCLE – Circle Fitting .. 420

13.1.30. ZV_FITELLIPSE – Ellipse Fitting ... 421

13.2. Transformation .. 422

13.2.1. ZV_MAT2DADDTRANS – Add Translation for Transformation Matrix

 422

13.2.2. ZV_MAT2DADDROT – Add Rotate for Transformation Matrix 423

13.2.3. ZV_MAT2DADDSCALE – Add Scaling for Transformation Matrix 424

13.2.4. ZV_GETSIMILARITYP – Build Similarity Transformation Matrix 425

13.2.5. ZV_GETRIGIDVECTOR – Calculate Rigid Transformation Matrix 426

13.2.6. ZV_GETRIGID – Calculate Rigid Transformation Matrix 427

13.2.7. ZV_GETSIMILARITY – Calculate Similarity Transformation Matrix .. 428

13.2.8. ZV_GETAFFINE – Calculate Affine Transformation Matrix 429

13.2.9. ZV_ESTSIMILARITY -- Estimate Similarity Matrix 430

13.2.10. ZV_ESTAFFINE -- Estimate Affine Matrix .. 431

14

13.2.11. ZV_AFFINETRANS – Affine Transformation 433

13.2.12. ZV_VECTORCORRECT – Vector Correction 435

13.2.13. ZV_POSECORRECT – Vector Correction .. 436

13.2.14. ZV_RECT2RCORRECT – Rectangle Correction 438

13.2.15. ZV_SECTRCORRECT – Sector Correction .. 439

13.2.16. ZV_AFFINETOPARAM – Transformation Parameter 440

13.3. Correction .. 442

13.3.1. ZV_GENCORRECTION – Generate Position Correction Model 442

13.3.2. ZV_APPLYCORRECTION – Execution Position Correction 442

13.4. Calibration .. 443

13.4.1. ZV_CALGENSCATAB – Generate Solid Circle Array Calibration Plate

Image 443

13.4.2. ZV_CALGENCHESSTAB – Generate Chess Calibration Plate Image . 444

13.4.3. ZV_CALGETSCAPTS – Generate Center Coordinate of Solid Circle

Calibration Plate .. 444

13.4.4. ZV_CALGENCHESSPTS – Get the Corner Point Coordinates of the

Checkerboard Calibration Plate .. 445

13.4.5. ZV_CALGETBASE – Get Base Coordinate System 446

13.4.6. ZV_CALGETPTSMAP – Calculate Map Point Pair of Pixel Coordinate

And Word Coordinate .. 447

13.4.7. ZV_CALGETPTSMAPBASE – Calculate Map Point Pair of Pixel

Coordinate And Word Coordinate ... 449

13.4.8. ZV_CALCAM -- Calibration ... 451

13.4.9. ZV_CALUNDISTORTPARAM – Get Undistort Parameters 452

13.4.10. ZV_CALDECOMPOSE – Calibration Parameters Decomposition 453

13.4.11. ZV_CALGETPIXSCALE – Get Pixel Scale ... 454

13.4.12. ZV_CALERROR – Calibrate Error .. 455

13.4.13. ZV_CALGETERROR – Calibrate Error ... 456

13.4.14. ZV_CALTRANSI – From World to Pixel Coordinate 457

13.4.15. ZV_CALTRANSW – From Pixel to World ... 458

13.4.16. ZV_CALTRANSWCONTS – From Pixel to World 459

13.4.17. ZV_CALUNDISTORT – Distort Image Correction 460

Chapter XIV Defect .. 462

14.1. Measurement Type Defect ... 462

14.1.1. ZV_DEFCREATEMRCONT2 –Create Contour Pair Defect Detection

Handle 462

14.1.2. ZV_DEFSETPARAMMR – Set Measurement Type Defect Detection

Parameters .. 462

14.1.3. ZV_DEFGETPARAMMAR – Get Measurement Type Defect Detection

Parameters .. 463

14.1.4. ZV_DEFAPPLYMR – Detect Measurement Type Defects 464

14.2. Result Obtaining .. 464

14.2.1. ZV_DEFGETOBJECT – Obtain ZVOBJECT Object in Defects Result .. 464

14.2.2. ZV_DEFGETVALUE – Obtain Value Parameters in Defect Result 465

15

14.2.3. ZV_DEFGETINFO – Obtain Middle Information of Defect Detection . 466

Chapter XV Drawing .. 468

15.1. ZV_COLOR – Generate Color ... 468

15.2. ZV_POINTS – Point Set ... 468

15.3. ZV_LINE – Straight Line .. 469

15.4. ZV_CONTOUR – Contour ... 469

15.5. ZV_CONLIST – Contour List .. 470

15.6. ZV_RECT – Rectangle .. 471

15.7. ZV_RECT2 – Rotate Rectangle .. 472

15.8. ZV_CIRCLE – Circle .. 472

15.9. ZV_ELLIPSE -- Ellipse .. 473

15.10. ZV_ELLIPSEARC – Ellipse Arc ... 474

15.11. ZV_ELLIPSEARCBYPTS – Ellipse Arc .. 475

15.12. ZV_POLYGON – Polygon ... 476

15.13. ZV_ARROW – Arrow ... 476

15.14. ZV_MARKER – Mark .. 477

15.15. ZV_TEXT -- Text .. 478

15.16. ZV_MASK – Mask Image ... 479

15.17. ZV_REGION – Region ... 479

15.18. ZV_MEASURER – Measurement Region ... 480

15.19. ZV_DRASHAPEMATCH – Shape Template .. 481

Chapter XVI Vision Usage Examples ... 483

16.1. Coordinate System Calibration .. 483

16.2. Acquisition by Soft Trigger .. 487

16.3. Acquisition By External Trigger ... 488

16.4. Contour Position .. 488

16.5. Line Intersection Positioning ... 489

16.6. Vector Correction ... 490

16.7. Two-Point Correction .. 490

16.8. Measurement Position Correction .. 491

16.9. File Operation ... 492

Chapter XVII Appendix ... 493

17.1. Knowledge Expansion ... 493

17.1.1. Matrix ... 493

17.1.1.1. Transpose .. 493

17.1.1.2. Reverse Torque .. 494

17.1.1.3. Matrix Multiplication .. 494

17.1.2. Image .. 495

17.1.2.1. Image Multiplication .. 495

17.1.2.2. Image Division ... 495

17.1.2.3. Norm .. 496

17.1.2.4. Distance Between Pixels ... 497

17.1.2.5. Image Average Value ... 498

17.1.2.6. Image Variance .. 498

16

17.1.2.7. Histogram .. 498

17.1.2.8. Color Space .. 499

17.1.2.9. Grayscale Image .. 501

17.1.2.10. Mirror .. 501

17.1.2.11. Rotation .. 502

17.1.2.12. Scaling ... 502

17.1.2.13. Affine .. 502

17.1.2.14. Median Filtering ... 503

17.1.2.15. Mean Filtering .. 504

17.1.2.16. Gaussian Filter ... 504

17.1.2.17. Bilateral Filtering .. 505

17.1.2.18. Sobel Edge Detection ... 505

17.1.2.19. SCHARR Filter .. 506

17.1.2.20. Laplacian Edge Detection .. 506

17.1.2.21. Canny Edge Detection .. 507

17.1.2.22. Gradient .. 507

17.1.2.23. Frequency Domain ... 507

17.1.2.24. Dilation and Erosion ... 508

17.1.2.25. Opening Operation and Closed Operation 508

17.1.2.26. Histogram Equalization ... 508

17.1.2.27. Gamma Transform ... 509

17.1.2.28. Grayscale Stretching.. 510

17.1.2.29. Image normalization .. 510

17.1.2.30. Image Enhancement .. 511

17.1.2.31. Binarization .. 511

17.1.2.32. Adaptive Binarization ... 511

17.1.2.33. Automatic Binarization .. 511

17.1.3. Matching .. 512

17.1.3.1. Shape Matching ... 512

17.1.3.2. NCC Matching .. 512

17.1.3.3. Grayscale Matching ... 512

17.1.4. Measurement ... 513

17.1.4.1. Grayscale Projection .. 513

17.1.5. Region... 513

17.1.5.1. Intersection, Union and Difference .. 513

17.1.5.2. Connected Component .. 514

17.1.5.3. Hole Filling ... 514

17.1.5.4. Skeletonization .. 515

17.1.5.5. External Rectangle & Rotate External Rectangle 515

17.1.5.6. Convexity .. 516

17.1.5.7. Compactness .. 516

17.1.5.8. Rectangularity .. 516

17.1.6. Recognition .. 517

17.1.6.1. Barcode .. 517

17

17.1.6.2. SVM .. 517

17.1.6.3. MLP .. 517

17.1.7. Tool ... 518

17.1.7.1. Hough Transform ... 518

17.1.7.2. Camera Distortion .. 519

17.1.7.3. Camera Internal and External Parameters 520

17.1.7.4. Calibration .. 520

17.1.8. Defect ... 521

17.1.8.1. Smooth Surface Defect Detection ... 521

17.2. Camera Parameters ... 521

17.2.1. Hikvision (Area Array) .. 521

17.2.2. Hikvision (Line Array) ... 528

17.2.3. Basler .. 533

17.2.3.1. Dahua ... 538

17.2.3.2. MindVision ... 545

17.2.3.3. Do3Think .. 548

17.2.3.4. Daheng ... 551

17.3. Error Codes .. 557

1

Chapter I ZVision Basic Quick Start

1.1. Linux Motion Controller

1.1.1. Motion Control Products Introduction

The motion controller based on the Linux operating system can manage and run

programs in a systematic way, also can optimize resource calls and organize work

processes reasonably. Compared with the "bare machine" (without software

configuration), the Linux motion controller supports rich functions for users and provides

a wealth of open interfaces for users. Namely, systematic management, multi-task

operation, batch jobs, pipeline processes and multi-functional services make the Linux

motion controller have huge advantages that "bare machine" does not have in terms of

efficiency, real-time response and human-computer interaction.

1.1.2. Products Advantages

The Linux motion controller can divide an application program into multiple tasks

during program execution, each task completes a part of the work, and each task can be

written as an infinite loop. According to the priority of the task, the operating system

executes each task in a time-sharing manner by the CPU to ensure that each task can be

run, which can make each task execute in parallel, then the idle time of the CPU can be

reduced and the utilization rate of the CPU can be promoted.

Zmotion provides powerful ZDevelop (RTSys) software development environment for

motion control products, it is easy to use.

Followings are advantages of Linux controller:

➢ It can be developed by several kinds of software that are built in PC.

➢ The code versatility and portability of the motion control software are good.

➢ There are many engineers who can carry out development work, then

development can be carried out without much training.

2

➢ Software under the Linux platform can be added freely to the controller.

➢ The controller can connect to the camera directly through Ethernet, and it

supports the secondary development of various machine vision applications.

➢ Support motion and vision mixed programming.

➢ Low power consumption and high utilization.

➢ Excellent management for task scheduling.

➢ It not only supports ZBasic, ZPLC, ZHMI programming, but also supports Linux

platform open programming (c, c++, java, python.).

3

1.2. Development Framework

4

1.3. Data Type

1.3.1. ZVOBJECT Type

The visual custom object type is defined by the ZVOBJECT keyword, and the related

data is managed by Basic. The specific type can be obtained through ZV_TYPE. And

following form shows types:

Type Description

0 Undefined

1 Image

2 Rectangle

3 Region

4 Contour

5 List

6 Calibration parameters

7 Measurer

8 NCC template

9 Shape template

10 Color model

ZVOBJECT defines a variable that only declares the variable identifier. If the variable

is not used, there is no type. When a variable is used in an instruction, if it is an output

variable, no need to consider the type. For variables of different types, the original variable

will be released automatically. For the same type, the original data will be released, and

the corresponding initialization will be performed to receive the output result. If it is an

input variable, then the specific type needs to adapt to the requirements of the command.

For example, if the command receives a variable of image type, the input variable must

also be of image type, otherwise an error will be reported.

If the same variable is used as input and output variables at the same time, the input

and output variables should be of the same type, otherwise the data of the input variable

will be cleared due to the automatic release of the aforementioned variables, and an error

will also be reported in this case. The case where the input and output are of the same

type is supported to facilitate the use of variables.

Notes:

5

➢ When different types of variables are used as instruction parameters, variables’

names can’t be the same, otherwise, data will be cleared.

➢ ZVOBJECT variable doesn’t support thread safety, please don’t operate the same

variable for multi-task.

1.3.2. ZVOBJECT General Operations

Type Instruction

Get the type ZV_TYPE

Whether is blank or not ZV_ISEMPTY

Copy the data ZV_COPY

clear the data ZV_CLEAR

6

1.4. Vision Positioning

1.4.1. Vision Positioning Process

7

1.4.2. Calibration Method

1. Calibrate through calibration plate

Put the calibration board on the same plane as the measured object on site, and

obtain the pixel coordinates of n feature points in the calibration board image by shooting

the calibration board with the camera. If the world coordinates of each feature point are

known, then input the world coordinates of n feature points accordingly. The way to obtain

the world coordinates of feature points can also use the machine to control probe for the

center of corresponding feature points, so as to obtain the world coordinates. Then use

these n pairs of pixel coordinates and world coordinates to calibrate the camera, and

calibrate the conversion relationship between the camera coordinate system and the

world coordinate system.

2. Calibrate through 9-point

Use the method of locating feature points to obtain the pixel coordinates of image

feature points. The methods that can be used for locating feature points include shape

matching, Blob positioning and circle positioning.

First, ensure that the target does not move. The machine controls the camera to move

nine times in the form of a nine-square grid and take pictures to collect nine images to

obtain the pixel coordinates of nine feature points. Move once to take a picture and locate

once. And take a picture once, make sure that the target is within the camera's field of

view, at the same time read out the world coordinates of the machine. Then use these

nine pairs of pixel coordinates and world coordinates to calibrate the camera, and

calibrate the conversion relationship between the pixel coordinate system and the world

coordinate system.

For more details, please refer to vision positioning routines.

1.5. Commonly Used Commands

Type Function Instruction

Image

Read the image ZV_READIMAGE

Show the image ZV_LATCH

Save the image ZV_WRITEIMAGE

8

Image information ZV_LATCHINFO

Clear the image ZV_LATCHCLEAR

Image

operation

Affine transformation ZV_AFFINE

Scale factor scaling ZV_ZOOM

Target size scaling ZV_RESIZE

Mirror ZV_MIRROR

Rotate ZV_ROTATE

Camera

Camera information CAM_GETINFO

Scan the camera CAM_SCAN

Select the camera CAM_SEL

Sample the camera CAM_GRAB

The number of cameras CAM_COUNT

Camera exposure CAM_SETEXPOSURE

Get the exposure CAM_GETEXPOSURE

Template

Create the template ZV_SHAPECREATERE

Read the template ZV_READSHAPEMOD

Match the template ZV_SHAPEFINO

Save the template ZV_WRITESHAPEMOD

Template parameters ZV_SHAPEDEFPARAM

Coordinates
From HMI into image ZV_POSTOTIMG

From image into HMI ZV_POSFROMIMG

Measurement

Rectangle measurement region ZV_MREGNRECT

Rotation measurement region ZV_MREGNRECT2

Ring measurement region ZV_MRGENARC

Circle measurement ZV_MRCIRCLE

Draw

Color ZV_COLOR

Mark the “Mark” point ZV_MARKER

Circle ZV_CLRCLE

Mask image ZV_MASK

Text ZV_TEXT

Rectangle ZV_RECT

Region ZV_REGION

Matrix
Get the matrix information ZV_MATINFO

Create the matrix data ZV_MATGENDATA

9

Matrix corrosion ZV_ERODE

Matrix expansion ZV_DILATE

Open operation ZV_OPENING

Close operation ZV_CLOSTING

Region

Generate matrix region ZV_REGENRECT

Generate circle region ZV_REGENCIRCLE

Generate ring region ZV_REGENANNULAR

Region

operation

Intersection ZV_REITSEC

Union ZV_REUNION

Difference set ZV_REDIFF

Transformation
Affine transformation ZV_AFFINETRANS

Rigid transformation ZV_GETRIGIDVECTOR

Filter

Gaussian filter ZV_GAUSSBLUR

Median filter ZV_MEDIANBLUR

Mean filtering ZV_MEANBLUR

Canny ZV_CANNY

Color

transformation

From RGB to gray image ZV_RGBTOGRAY

From gray to RGB ZV_GRAYTORGB

From other colors to RGB ZV_COLORTORGB

From RGB to other colors ZV_RGBTOCOLOR

Calibration

The solid circle calibration plate extracts

the pixel coordinates of the mark point
ZV_CALGETSCAPTS

Calibration ZV_CALCAM

Calibrate the error ZV_CALERROR

10

1.6. Applications

1.6.1. Dispensing

The visual dispensing machine is a kind of automatic dispensing machine. It can

work cyclically, that is, long working hours and automatic operation of high precision

glue-out, which saves manpower and improves the production efficiency of the enterprise.

First, the compressed air is sent into the glue bottle, and then the glue is pressed into the

feeding tube connected to the piston chamber so that the glue is pressed out of the needle

mouth. The entire operation steps are controlled in the software, and the entire workflow

is automated.

For the manual dispensing machine, it basically controls the entire working process

manually. First, the glue is output from the pressure tank into the syringe, and then the

controller is used to control the flow rate. Finally, the glue is applied by holding the syringe.

11

1.6.2. Laser Marking

Laser marking is a non-contact precision machining method that can be laser etched

on the surface of any irregular workpiece without causing deformation of the workpiece

due to internal stress caused by clamping, extrusion or impact. Then, high-precision and

high-quality processing quality can be achieved.

Through visual inspection technology, assist laser marking operations, which frees

laser marking from the limitations of fixtures and reduces processing costs while

improving system applicability. In addition, it can achieve high-precision positioning with

the help of vision detection, and positioning technology based on image processing can

realize micron-level accuracy. Another obvious benefit is that the automation process and

stability of the product line have greatly improved efficiency due to the reduction of

manual involvement.

12

1.6.3. PCB Board Detection

PCB board detection originates from the traditional manual visual judgment method,

instrument online detection method and functional testing method, machine vision

detection technology is with more obvious advantages in terms of efficiency, labor cost,

stability and accuracy. And there is a natural advantage in data collection for machine

vision detection. While the amount of visual data is increasing, the efficiency of machine

inspection technology can be further improved, which is what other inspection

technologies can not possess.

Visual inspection can quickly detect defects in PCB manufacturing accurately, non-

contact and highly flexible. Then scan the PCB board through the camera to obtain the

image of the solder joints on the PCB board, extract the characteristic solder joints, and

compare them with the information in the database. And with the help of embedded ARM,

DSP, FPGA, etc. to carry out high-speed operations, so as to quickly and efficiently detect

and classify welding defects, improve efficiency and greatly reduce time costs.

13

1.7. Common Problems

1.7.1. No Camera Scanned

➢ Check whether the wiring of the camera is loose, and whether the network LED of the

camera is normal.

➢ Check whether the IP of the camera is occupied.

➢ Check whether the camera IP is in the same network segment.

➢ Check whether the camera is the type supported by the controller.

➢ Check the parameters that are to scan the camera whether are correct.

1.7.2. Blurry Image

➢ Set the display size (ZV_LATCHSETSIZE) corresponding to the latch channel

corresponding to the image display. If the setting is not correct, the image may be

blurred. The latch size setting is used to zoom in and out of the image, and an

appropriate size needs to be set.

➢ Manually adjust the camera lens and adjust the focus.

➢ Set the appropriate exposure time in the camera.

➢ Manually adjust the aperture of the camera and adjust the brightness.

➢ Adjust the light source of environment to achieve a suitable brightness.

1.7.3. Camera Network

➢ When the camera is with higher pixel, it is necessary to ensure the network and use

a 1000M USB switch, otherwise it will cause the camera parameter to fail to write,

resulting in abnormal image acquisition.

➢ The camera network cable is directly connected to the network port of the controller,

and the IP of the camera should be consistent with the network segment of the

14

network port of the controller

1.7.4. Abnormal Homing

➢ Check whether the origin sensor detects a signal.

➢ Check whether the indicator light of the sensor is ON when returning to the origin.

➢ Adjust the position so that it can sense the signal and check whether the sensor wire

has fallen off.

1.7.5. Motor Doesn’t Move

➢ Reason of Driver:

The factory settings of the drive generally do not reverse the IO level, which will cause

the drive limit alarm. And the limit level should be set according to the drive manual. For

example, Panasonic servo needs to set the parameters of pr4.01 and pr4.02 to 010101h

(65793) and 020202h (131586) respectively. For other brands of drivers, please operate

according to the relevant driver manual.

Corresponding

parameter

Factory setting values

(decimal system)

Position control / full closed loop control

Signal name Logic

Pr4.00 00323232h (3289650) SI-MON5 Commonly-ON (ON)

Pr4.01 00818181h (8487297) POT Commonly-OFF (NC)

Pr4.02 00828282h (8553090) NOT Commonly-OFF (NC)

Signal Name Mark

Set values

Commonly-ON

(ON)

Commonly-OFF

(NC)

Invalid - 00h -

Prohibit driver inputting positively POT 01h 81h

Prohibit driver inputting negatively NOT 02h 82h

➢ Reason of Program:

15

⚫ If the UNITS setting is too small, the motor moves very slowly, which cannot be

distinguished by the naked eye.

⚫ The motor is in an abnormal state (limit, alarm...), unable to move, judge AXISSTATUS.

⚫ The wiring of the motor is wrong, and the pulse cannot be transmitted correctly.

⚫ The axis OP port is not enabled (only the servo motor needs to be open).

⚫ The program processing prevents the motor from moving, download the empty

program for confirmation.

⚫ The driver alarms.

Below reasons mainly for bus axes:

⚫ Fail to open bus scanning, print return values to confirm.

⚫ wdog switch enable doesn’t open, through axis_enable command.

⚫ Wrong drive status setting, please refer to driver manual.

Problem checking steps:

⚫ Open ZDevelop software to check problems.

⚫ Close other software or programs that are connected to controller, except ZDevelop,

to avoid external influences.

⚫ Use ZDevelop to download one empty program into controller to avoid internal

influences.

⚫ Open ZDevelop software, click “VIEW” – “Manual” and “VIEW” – “Axis Parameters”

for viewing and operating.

⚫ If it is pulse axis, check according to below steps.

16

1.7.6. Motor Only Moves in One Single Direction

➢ The motor is in the limit state, check AXISSTATUS to confirm.

➢ The motor control mode is wrong, set INVERT_STEP to the corresponding mode

(double pulse or pulse + direction).

➢ There is a problem with the motor wiring, check the wiring.

17

Chapter II Environment

2.1. Environment Description

2.1.1. Basic Limit

Name Max Limit Unit

Channel Numbers 4

Max Dimension 2 Space

Image Size 8192 Pixel

Camera Numbers 4

System Parameter Name Length 31/15
English Characters /

Chines Characters
Camera Parameter Name Length 63/31

File Path Length 255/127

2.1.2. Image Data Type

0 8-bit without symbol 8U

1 16-bit without symbol 16U

2 32-bit with symbol 32S

3 64-bit with symbol 64F

4 32-bit with symbol 64F

The image is the single channel by default, if there are multiple channels, it will be

specified. Multiple data types are mainly for efficiency, precision, application environment,

etc., 8U is the data type of the usual camera, only a small number of cameras that support

high dynamic range can support the data type of 16U. For 32S, 64F and 32F, they are

based on processing and storage for the intermediate results of image operations, but

they are valid in few cases.

18

2.1.3. ZVOBJECT Type

Type Value Type Description

0 Undefined The variable that is new defined, no type information

1 Image

Multiple types of two-dimensional array structure,

support multi-channel.

Ordinary image, intermediate operation result,

binary/difference/integral image, frequency domain

image, etc.

2 Matrix

Two-dimensional array 64F type, only single channel

is supported.

General matrix, various transformation matrices, point

sets, etc., distinguish single columns from images

based on computing efficiency.

3 Region

Form a coded area, it is similar to a binary image,

indicating the mask area of the image operation or the

BLOB information of the image.

4 Contour

One-dimensional point set, it saves contour (closed)

or edge data, and it can cache various feature

parameters of contour to improve the efficiency of

some applications.

5 List

One-dimensional indefinite type structure, an array of

various ZVOBJECT types, such as outline list, area list,

etc.

6
Calibration

parameter

Dedicated data structure, result of linear or nonlinear

calibration, result of distortion calibration or result of

comprehensive calibration.

7 Measurer
Dedicated data structures for measurements of many

types of geometric parameters.

8 NCC template

Dedicated data structure, data of NCC matching

template. It can read template image, region,

parameters.

9 Shape template

Dedicated data structure, data of shape matching

template. It can read template image, region, contour,

parameters.

19

2.2. Initialization

2.2.1. ZV_ENVINIT – Initialization of Running Environment

Type Initialization

Description

It is used to initialize ZVision running environment, all ZVOBJECT

variables will be cleared. And in some special situation, it is only

called when Basic environment needs to be initialized again.

Grammar ZV_ENBINIT()

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example ZV_ENBINIT() ‘initialize ZVision running environment

2.3. Performance Mode

2.3.1. SYSTEM_ZVTASKS – Controller Task Mode

Type Performance mode

Description

It is used to set the number of tasks of visual module, the default

value is 1. If 2 or 3 are set, ZV commands for multi-task will be

accelerated. For large images, it is recommended to set a bigger

value, otherwise, Led may shrink or be incomplete. Like, for image

above 2 million, 2 is set best, for image above 5 million, 3 is set

best.

Grammar
SYSTEM_ZVTASKS = task

task: task is the number of tasks for visual module

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example SYSTEM_ZVTASKS = 2 ‘set vision module tasks as 2

20

2.4. General Operations

2.4.1. ZV_OBJTYPE – Get the Type

Type ZVOBJECT general operation

Description

It is used to get the type of ZVOBJECT variables. Please refer to

2.1.3. for types.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Alias: ZV_TYPE

Grammar

ZV_OBJTYPE(obj,tabId) or number = ZV_OBJTYPE(obj)

obj: parameter defined by ZVOBJECT

tabId: TABLE index that outputs the result

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example

ZVOBJECT mat

ZV_OBJTYPE(mat,0)

?TABLE(0) 'the result is 0

ZV_MATGENCONST(mat,3,3,0)

‘generate a 0 matrix of 3 rows and 3 columns

ZV_TYPE(mat,1)

?TABLE(1) ' the result is 2

2.4.2. ZV_OBJISEMPTY – Whether is Empty

Type ZVOBJECT general operation

Description

It is used to judge whether ZVOBJECT variable is blank or not. If it

is blank, which means variable has no type (such as, new defined

variables) or variable data area is blank (such as, ZV_CLEAR is

called).

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Alias: ZV_ISEMPTY

Grammar ZV_OBJISEMPTY(obj,tabId) or value = ZV_OBJISEMPTY(obj)

21

obj: parameter defined by ZVOBJECT

tabId: TABLE index, output the result, 1 means blank, 0 means

non-blank.

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example

ZVOBJECT obj

ZV_OBJISEMPTY(obj,0)

IF TABLE(0)=1 THEN

PRINT "obj variable is empty"

ELSE

PRINT "obj variable is not empty”

ENDIF

2.4.3. ZV_OBJCOPY – Copy Object Data

Type ZVOBJECT general operation

Description

It is used to copy ZVOBJECT variable data, and all data are copied

through deep copy except list, if it copies list, list element is still as

the “quote” type.

Alias: ZV_COPY

Grammar

ZV_OBJCOPY(src,dst)

src: ZVOBJECT type, copy source object

dst: ZVOBJECT type, target object that is copied

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example

ZVOBJECT src, dst

ZV_MATGENCONST(src,3,3,0)

'generate a 0 matrix of 3 rows and 3 columns

ZV_OBJCOPY(src,dst) 'copy data of obj to dst

2.4.4. ZV_OBJCLEAR – Clear

Type ZVOBJECT general operation

22

Description

It is used to clear ZVOBJECT variables data, only data part is

cleared, structural definition of ZVOBJECT still holds, and type can

be obtained. For variables that are quoted from LIST, data also is

cleared, namely, corresponding list element data will be cleared.

Alias: ZV_CLEAR

Grammar
ZV_CLEAR(obj)

obj: object parameter defined by ZVOBJECT

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example

ZVOBJECT obj

ZV_MATGENCONST(obj,3,3,0)

'generate a 0 matrix of 3 rows and 3 columns

ZV_OBJCLEAR(obj) 'clear object data

2.4.5. ZV_OBJDETACH – Detach Quote & Connection

Type ZVOBJECT general operation

Description

It is used to detach the quote or connection of ZVOBJECT variable.

If there is no other variables’ quote or connection, all are detached,

including variable structure. For variables that are quoted from

LIST, quote is disconnected, which means variables become blank,

then its operations will not influence object that is quoted in LIST

before.

Alias: ZV_DETACH

Grammar
ZV_OBJDETACH(obj)

obj: object parameter defined by ZVOBJECT

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

2.4.6. ZV_OBJTYPEFILE – Get File ZVOBJECT Variable

Type

Type ZVOBJECT general operation

23

Description

It is used to get the file’s ZVOBJECT variables types. Please refer

to 2.1.3. for types.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_OBJTYPEFILE(name,tabId) or type = ZV_OBJTYPEFILE(name)

name: file path that saves ZVOBJECT object’s file

tabId: TABLE index that outputs the result

type: variable type obtained directly

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example
type = ZV_OBJTYPEFILE(“mat.zvb”)

?type ‘ZVOBJECT variable type saved by mat.zvb

2.4.7. ZV_OBJREAD – Read ZVOBJECT Object

Type ZVOBJECT general operation

Description

Read the ZVOBJECT object from the file. The file extension is zvb.

And it is the binary type.

Support region, matrix, contour, list, calibration, NCC template,

shape template, measurement defect detector (contour pair), OCR

classifier, color model, OCR sample.

Grammar

ZV_OBJREAD(obj,name)

obj: the object to be read, ZVOBJECT type, the variable type is

determined by the file content, refer to the ZV_OBJTYPEFILE

instruction

name: the path to read the file, extension zvb, if not, it will be

added automatically

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example

ZVOBJECT obj

ZV_OBJREAD(obj,"mod.zvb")

'read the mod.zvb file in the path into the obj object

24

2.4.8. ZV_OBJWRITE – Save ZVOBJECT Object

Type ZVOBJECT general operation

Description

Save the ZVOBJECT object into specified path. The file extension

is zvb. And it is the binary type.

Support region, matrix, contour, list, calibration, NCC template,

shape template, measurement defect detector (contour pair), OCR

classifier, color model, OCR sample.

Grammar

ZV_OBJWRITE(obj,name)

obj: the object to be saved, ZVOBJECT type

name: the path to save the file, extension zvb, if not, it will be

added automatically

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example

ZVOBJECT obj

ZV_OBJREAD(obj,"mod.zvb")

'save the color mode mod as zvb format file

2.4.9. ZINDEX_LABEL – Get Index

Type ZVOBJECT

Description
It is used to get the type of ZVOBJECT object index, object index is

a digital No., which is similar to a pointer that points to data.

Grammar
index = ZINDEX_LABEL (obj)

 obj: object parameter defined by ZVOBJECT

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example

Example 1:

ZVOBJECT img

ZV_READIMAGE(img,"logo.png",0) ‘read one image

index = ZINDEX_LABEL(img) ‘get the index of image

Example 2:

ZVOBJECT zvarray(100)

25

ZVOBJECT aa,bb,cc

DIM zind

zind = ZINDEX_LABEL(zvarray)

ZV_READIMAGE(ZINDEX_ZVOBJ(zind)(1), "logo.png", 0)

'read image

ZV_LATCH(ZINDEX_ZVOBJ(zind)(1),0)

'show image in latch channel 0

Example 3:

GLOBAL SUB objindx(BYREF obj(100) as ZVOBJECT)

ZV_LATCH(obj(1),0) 'show the image

DELAY(2000)

ZV_LATCH(obj(10),0) 'show the image

DELAY(2000)

ZV_LATCH(obj(1),0) 'show the image

ENDSUB

GLOBAL SUB objtest ()

ZVOBJECT zvarray(100)

DIM zind

zind = ZINDEX_LABEL(zvarray)

ZV_READIMAGE(ZINDEX_ZVOBJ(zind)(1), "img1.bmp", 0)

ZV_READIMAGE(ZINDEX_ZVOBJ(zind)(10), "img1.bmp", 0)

objindx(ZINDEX_ZVOBJ(zind)

ENDSUB

2.4.10. ZINDEX_ZVOBJ – Get Index Data

Type ZVOBJECT

Description It is used to get the data of index.

Grammar
ZVINDEX_ZVOBJ (index)

 index: index No.

Controller
It is valid in controllers that support ZV function or they belong to

5XX series or above.

Example Refer to ZINDEX_LABLE example.

26

2.5. Parameters Related

2.5.1. Parameters Description

The system parameter retains the initial value, and the beginning part of the program

can be modified as needed. “name” is the parameter name, the type is character string

type, and it is case-sensitive, “value” is the parameter value. After the controller is started,

all parameters are the initial values, and all modifications will remain until they are

modified again or the controller is restarted.

The parameters of this summary can be set through the instructions in 2.5.2, and the

corresponding type of read and write instructions can be selected according to the type

of the parameter.

Note: the "C:\" path is automatically converted to "flash\", and "A:\" is the U disk path.

2.5.1.1. Data Catalogue

Name “DataDir”

Type Character string

Description

This is the default catalogue for file operation. When file path belongs

to relative path, path automatically adds this catalog. For absolute

path, no influence. When blank character string is passed, it will

automatically modify as the value of parameter “DefDataDir”.

Relative path is used best for file operation, in this way, simulator and

controller can be compatible.

Initial Value
Controller path is “/zmc/flash/”, for simulator, it is under path of

“flash”.

2.5.1.2. Default Data Directory

Name “DefDataDir”

Type Character string

27

Description
It means default value of data catalog, when blank character string is

passed, it will automatically modify as initial value.

Initial Value
Controller path is “/zmc/flash/”, for simulator, it is under path of

“flash”.

2.5.1.3. List Parameter Name

Name “NameList” / “”

Type Character string

Description

List all parameter names, separated by ";", integer, floating point and

string parameters, with additional newlines between types. This

function is also implemented if the parameter name is empty.

Permission Read-only

2.5.1.4. List Parameter Information

Name “ParamList”

Type Character string

Description

List all parameter information, one parameter per row, including

parameter name, type, permission, current value information, type I-

integer, D-floating point, S-string, permission R-readable, W-writable,

C-naming, command permission is a kind of write-only permission,

and is also executed by writing parameter instructions.

Permission Read-only

2.5.1.5. All Parameters Resume Default Values

Name “ResetAll”

Type Integer

Description

For command parameters with write-only permission, after executing

the write command, all parameters except "DefDataDir" will be

restored to their default values. The parameter values will have no

28

effect.

Permission Read-only & Command

2.5.1.6. Grab Timeout

Name “GrabTimeout”

Type Floating type

Range >0

Unit ms

Initial Value 2000

2.5.1.7. Image Getting Timeout

Name “CamGetTimeout”

Type Floating type

Range >0

Unit ms

Initial Value 30000

2.5.1.8. Shape Template Creating Level

Name “ShapeCreateLevel”

Type Integer

Range

0~4.

0~3 means some parts of template features are created. The value is

bigger, created feature of template is more. 4 means template is

created fully. 0 means self-adaption method.

According to memory occupied by template, select 1 or 2.

Parts of features are created through 1-3, remaining template

features will be generated automatically during matching instruction,

which means matching efficiency will be lower, but the memory size

occupied by template features will be less.

29

Initial Value 0

2.5.1.9. Shape Template Creating Timeout

Name “ShapeCreateTimeout”

Type Floating type

Range >0

Unit ms

Initial Value 2000

2.5.1.10. Shape Template Matching Timeout

Name “ShapeFindTimeout”

Type Floating type

Range >0

Unit ms

Initial Value 2000

2.5.1.11. NCC Template Creating Timeout

Name “NccCreateTimeout”

Type Floating type

Range >0

Unit ms

Initial Value 2000

2.5.1.12. NCC Template Matching Timeout

Name “NccFindTimeout”

Type Floating type

Range >0

30

Unit ms

Initial Value 2000

2.5.1.13. Image Distortion Correction Mode

Name “CalibRectMode”

Type Integer

Range

0 – correction without black border

1 – correction with full pixel, which means there may be with black

border.

Default Value 0

2.5.1.14. Line

Name “LineType”

Type Integer

Range

0 -- anti-aliasing

1-4 – connection

2-8 – connection

Default Value 2

2.5.1.15. Line Width

Name “LineWidth”

Type Integer

Range 1~8192

Unit Pixel

Initial Value 1

31

2.5.1.16. Graphic Drawing Fill

Name “IsDrawFill”

Type Integer

Range

When setting drawing graphics, whether the closed graphics is filled

inside, the graphics drawing instructions are other drawing

instructions except the text drawing instructions.

Range 0: not filled, only draw graphic edge, 1: fill

Initial Value 0

2.5.1.17. Text Drawing Fill

Name “IsTextFill”

Type Integer

Range
Set whether to fill the interior when drawing text. If not filled, only the

outer outline of the text will be drawn.

Range 0: not filled, 1: fill

Initial Value 1

2.5.1.18. Text Drawing Base Position

Name “TextBase”

Type Integer

Range

Set the reference position of the text when drawing text, that is, the

point on the text area corresponding to the coordinate point passed

in when drawing text. If set to 0, the drawn text will be located at the

upper right position of the coordinate point, and if it is 1, it will be

located on the bottom right position of the coordinate point

Range 0: left bottom corner, 1: left upper corner

Initial Value 0

32

2.5.1.19. Whether Shape Matching Allows Exceeding Border

Name “ShapeOnBorder”

Type Integer

Description

When setting shape template matching, whether the contour of

template exceeds matched ROI area. Please note this parameter has

one certain influence on matching efficiency.

Range
0 – target doesn’t exceed image border

1 – target can exceed image border

Initial Value 0

2.5.1.20. Shape Matching Expansion Interface

Name “ExtensionShape”

Type Integer

Description

Set whether the shape matching function uses the expansion pack

algorithm. Turning on the expansion pack algorithm requires an

expansion pack plug-in and plug-in related dependencies. After

successful opening, the extended algorithm will be used to create a

template, and the matching will be automatically selected based on

the template type. If it fails to be opened, an error will be reported and

the parameter values will not be modified.

Range 0: inner algorithm, 1: Halcon expansion pack algorithm

Initial Value 0

2.5.1.21. Measurement Threshold Mode

Name “MrThreshMode”

Type Integer

Description

Threshold mode that measures gradient (contrast). The relative

threshold mode is normalized to 255 for the maximum gradient. A

higher contrast threshold can also be obtained for low-contrast

images. The compatibility mode uses different threshold modes for

33

different functions, the relative threshold mode is used for area

measurement and geometric measurement, and the absolute

threshold mode is used for measurement defects.

Range -1: compatible mode, 0: relative threshold, 1: absolute threshold

Initial Value -1

2.5.1.22. Minimum Measured Gradient Threshold

Name “MrMinThresh”

Type Integer

Description

It means the minimal measured gradient threshold when in relative

threshold mode. If one value is smaller than this one, it is considered

as noise point, which means it will not be as measurement point, then

it is only valid under relative threshold mode.

Range >0

Default Value 12

2.5.1.23. Maximal Camera Numbers

Name “MaxCameras”

Type Integer

Permission Read-only

Value 4

2.5.1.24. Image Maximal Dimension

Name “MaxDims”

Type Integer

Permission Read-only

Value 2

34

2.5.1.25. Image Maximal Channel Numbers

Name “MaxChannels”

Type Integer

Permission Read-only

Value 4

2.5.1.26. Image / Matrix Maximal Size

Name “MaxSize”

Type Integer

Permission Read-only

Unit Pixel

Value 32766

2.5.1.27. Version No.

Name “Version”

Type Character string

Permission Read-only

2.5.1.28. Hardware Platform

Name “Platform”

Type Character string

Permission Read-only

Value

Windows 64bit - "Win_x64"

Windows 32bit - "Win_x86"

Linux Arm64 - "Linux_aarch64"

Linux 64bit - "Linux_x64"

35

2.5.2. Parameters Reading & Writing

2.5.2.1. ZV_SETSYSINT – Integer Type Setting

Type Parameters reading and writing

Description It is used to set parameter value in integer type.

Grammar

ZV_SETSYSINT (name, value)

name: parameter name, character string type

value: parameter value that is set, integer

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZV_SETSYSINT (“LineWidth”, 1) ‘set line width as 1

Related instruction ZV_GETSYSINT (integer type reading)

2.5.2.2. ZV_GETSYSINT – Integer Type Reading

Type Parameters reading and writing

Description

It is used to read parameter value in integer type.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_GETSYSINT (name, tabId) or value = ZV_GETSYSINT (name)

name: parameter name, character string type

tabId: TABLE index that saves read parameter value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example Value = ZV_GETSYSINT (“LineWidth”) ‘read line width

Related instruction ZV_SETSYSINT (integer type setting)

2.5.2.3. ZV_SETSYSDBL – Floating Type Setting

Type Parameters reading and writing

Description It is used to set parameter value in floating point type.

36

Grammar

ZV_SETSYSDBL (name, value)

name: parameter name

value: parameter value that is set, in floating point type

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZV_SETSYSDBL (“GrabTimeout”, 5000) ‘set sampling timeout

as 5000ms

Related instruction ZV_GETSYSDBL (faloting type reading)

2.5.2.4. ZV_GETSYSDBL – Floating Type Reading

Type Parameters reading and writing

Description

It is used to read parameter value in floating type.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_GETSYSDBL(name, tab_value) or value = ZV_GETSYSDBL

(name)

name: parameter name

tab_value: TABLE index that saves read parameter value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
Value = ZV_GETSYSDBL (“GrabTimeout”) ‘read sampling

timeout

Related instruction ZV_SETSYSDBL (floating type setting)

2.5.2.5. ZV_SETSYSSTR – Character String Type Setting

Type Parameters reading and writing

Description It is used to set parameter value in character string type.

Grammar

ZV_SETSYSSTR (name, value)

name: parameter name

value: parameter value that is set, in character string type

Controller It is valid in controllers that support ZV function or they belong

37

to 5XX series or above.

Example

ZV_SETSYSSTR("DataDir","") 'set default data catalogue

ZV_GETSYSSTR("DataDir",20,0)

 ‘read value in default path data catalog into TABLE(0)

FOR i =0 TO 20

PRINT CHR(TABLE(i))

'convert value in table into character string

NEXT

 ZV_GETSYSSTR (character string type reading)

2.5.2.6. ZV_GETSYSSTR – Character String Type Reading

Type Parameters reading and writing

Description

It is used to read parameter value in character string type.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_GETSYSSTR(name, max_len, tab_value) or str =

ZV_GETSYSSTR (name)

name: parameter name

max_len: the max available length of tab_value

tab_value: TABLE index that saves read parameter value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_SETSYSSTR("DataDir","D:/data/") 'set default data

catalogue

ZV_GETSYSSTR("DataDir",20,0)

 ‘read value in default path data catalog into TABLE(0)

FOR i =0 TO 20

PRINT CHR(TABLE(i)) 'print default path

NEXT

Related instruction ZV_SETSYSSTR (character string type setting)

38

2.6. Error Processing

2.6.1. ZV_LASTERR – Error Code of Last Time

Type Error processing

Description

It is used to read get or modify the error code appeared at the

last time. Parameter dedicates the task No. that needs to get

error information, if it is not with parameter, the task current is

used.

Note: ZDevelop command line and HMI interface both have

independent task No.

Grammar

Get the last error code of the task: error = ZV_LASTERR (taskid)

Modify the last error code of the task: ZV_LASTERR (taskid) = 0

taskid: task No., no parameter is brought, current task is

used.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

Example 1:

IF (0<>ZV_LASTERR) THEN

RETURN

Example 2:

ZV_LASTERR(taskid)=0 ‘clear errors of current task appeared

at the last time

2.6.2. ZV_RUNERR – Error Code when Running

Type Error processing

Description

It is used to read get or modify the running error code, and the

recorded error code is the instruction that runs incorrectly.

Parameter dedicates the task No. that needs to get error

information, if it is not with parameter, the task current is used.

Note: ZDevelop command line and HMI interface both have

independent task No. And the vision instruction of first error

39

reported of the task is recorded, if there is no clearing operation,

this information will be held all the time.

Grammar

Get the running error code of the task: error = ZV_RUNERR

(taskid)

Modify the running error code of the task: ZV_RUNERR (taskid)

= 0

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

Example 1:

IF (0<>ZV_RUNERR) THEN RETURN

'if the current task error code is not 0, then return

Example 2:

ZV_RUNERR(taskid)=0 ‘clear running errors of taskid task.

2.6.3. ZV_RUNERRSTR – Running Error Code Information

Description

Type Error processing

Description It is used to get information description of running errors.

Grammar error = ZV_RUNERRSTR (taskId)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

Example:

error = ZV_RUNERRSTR()

'get running error code description information of current task

40

Chapter III File Operation

The file name can use absolute path or relative path. The relative path is relative to

the data directory specified by the system configuration "DataDir", and the data directory

can be modified as a new directory through the system configuration.

The default data directory in the simulator is the flash subdirectory of the directory

where the simulator exe program is located.

3.1. Matrix

3.1.1. ZV_READMATRIX – Reading

Type Matrix

Description

It is used to read matrix file.

xml, yaml and zvb files are supported, zvb is customized binary

system type.

Alias: ZV_MATREAD

Grammar

ZV_READMATRIX(mat,name[,param=0])

mat: ZVOBJECT type, the matrix that is read

name: matrix path that is to be read, the default type is zvb

param: reserved parameter, it must be 0

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_READMATRIX(mat,"mat.zvb",0)

'read mat.zvb file of the path into mat

Related Instruction ZV_WRITEMATRIX

3.1.2. ZV_WRITEMATRIX – Storage

Type Matrix

41

Description

It is used to save matrix into specified path. The file expansion

name is zvb, which is a kind of customized binary system.

Alias: ZV_MATWRITE

Grammar

ZV_WRITEMATRIX(mat,name[,param=0])

mat: ZVOBJECT type, the matrix that is saved

name: matrix path that is to be saved, the default type is

zvb

param: reserved parameter, it must be 0

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_WRITEMATRIX(mat,3, 3, 0)

‘generate a 0 matrix of 3 rows and 3 columns

ZV_WRITEMATRIX(mat,"mat.zvb",0)

'save mat matrix as zvb format file

Related Instruction ZV_READMATRIX

3.2. Image

3.2.1. ZV_READIMAGE – Image Reading

Type Image

Description
It is used to read image by getting the value according to “type”.

Alias: ZV_IMGREAD

Grammar

ZV_READIMAGE(img,name[,type=0])

img: ZVOBJECT type, the image that is read

name: the path of the image to be read. The path can be

set as an absolute path or a relative path. The relative path can

be set in the default directory. The supported extension is bmp,

jpg or png. If the file has no extension name, then add the “bmp”

extension name.

type: control parameters

Type Description

0 Original format image is read

42

1 Gray image is read

2 RGB image is read

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"logo.png",0)

‘read log and png images in original image format

Related Instruction ZV_LATCH (image showing)

3.2.2. ZV_WRITEIMAGE – Image Storage

Type Image

Description

It is used to save image. Formats of bmp, jpg and png are

supported, and for jpg format, single channel or three-channel

8-bit images can be saved. For bmp and png formats, single-

channel, three channel or four-channel 8-bit images can be

saved. In addition, 16-bit single channel images can be saved

in png format.

Alias: ZV_IMGWRITE

Grammar

ZV_WRITEIMAGE(img,name[,param=0])

img: ZVOBJECT type, the image that is read

name: image path name. According to expansion name,

confirm image format, bmp, jpg or png are supported. If the file

has no extension name, then add the “bmp” extension name.

param: image compression parameter, it is >0 and ≤ 100.

The compression level is lower, image effect is better. 0 is the

default value.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_IMGGENCONST(img,100,100,2,2,0)

‘generate one 100*100 image “img” of 32-bit short type

with symbol from TABLE (0), and the channel is 2.

ZV_WRITEIMAGE(img,"1.bmp",0)

43

‘save the image into default path, and name it as 1.bmp

Related Instruction ZV_READIMAGE (image reading)

3.3. Region

3.3.1. ZV_READREGION – Read Region

Type Region

Description

It is used to read region from the file, the file expansion name is

zvb, it is binary type.

Alias: ZV_REREAD

Grammar

ZV_READREGION (re, name)

re: region to be read, ZVOBJECT type

name: region file path, expansion name is zvb, if there is no

expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT re

ZV_REREAD(re,"re.zvb") 'read re. zvb file into re

Related Instruction ZV_WRITEREGION

3.3.2. ZV_WRITEREGION – Save Region

Type Region

Description

It is used to save region into the file, the file expansion name is

zvb, it is binary type.

Alias: ZV_REWRITE

Grammar

ZV_WRITEREGION (re, name)

re: region to be saved, ZVOBJECT type

name: region file path, expansion name is zvb, if there is no

expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

44

Example

ZVOBJECT re

ZV_REGENLINE(re,50,50,200,200)

ZV_REWRITE(re,"re.zvb") 'save region re as zvb format file

Related Instruction ZV_READREGION

3.4. Template

3.4.1. ZV_READNCCMOD – NCC Mode Reading

Type Template

Description

It is used to read NCC template file, the file expansion file is zvb,

which is customized binary system.

Alias: ZV_NCCREAD

Grammar

ZV_READCNNMOD (mod, name)

mod: ZVOBJECT type, NCC template that is read

name: NCC template path, expansion name is zvb, if there

is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod

ZV_READNCCMOD(mod,"mod.zvb")

'read mod. zvb file into mod.

Related Instruction ZV_WRITECNNMOD

3.4.2. ZV_WRITENCCMOD – NCC Mode Storage

Type Template

Description

It is used to save NCC template into specified path, the file

expansion file is zvb, which is customized binary system.

Alias: ZV_NCCWRITE

Grammar
ZV_READCNNMOD (mod, name)

mod: ZVOBJECT type, NCC template that is saved

45

name: NCC template path, expansion name is zvb, if there

is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod

ZV_WRITENCCMOD(mod,"mod.zvb")

'save template mod as zvb format file

Related Instruction ZV_READCNNMOD

3.4.3. ZV_READSHAPEMOD – Shape Mode Reading

Type Template

Description

It is used to read shape template file, the file expansion file is

zvb, which is customized binary system.

Alias: ZV_SHAPEREAD

Grammar

ZV_READSHAPEMOD (mod, name)

mod: ZVOBJECT type, shape template that is read

name: shape template path, expansion name is zvb, if

there is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod

ZV_READSHAPEMOD(mod,"mod.zvb")

'read mod. zvb file into mod.

Related Instruction ZV_WRITESHAPEMOD

3.4.4. ZV_WRITESHAPEMODE – Shape Mode Storage

Type Template

Description

It is used to save shape template into specified path, the file

expansion file is zvb, which is customized binary system.

Alias: ZV_SHAPEWRITE

46

Grammar

ZV_READCNNMOD (mod, name)

mod: ZVOBJECT type, shape template that is saved

name: shape template path, expansion name is zvb, if

there is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod

ZV_WRITESHAPEMOD(mod,"mod.zvb")

'save template mod as zvb format file

Related Instruction ZV_READSHAPEMOD

3.5. Calibration

3.5.1. ZV_CALREAD – Calibration Parameters Reading

Type Calibration

Description
It is used to read calibration parameter file, the file expansion

file is zvb, which is customized binary system.

Grammar

ZV_CALREAD(calParam, name)

calParam: ZVOBJECT type, calibration parameter that is

read

name: calibration parameter path, expansion name is zvb,

if there is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT calParam

ZV_CALREAD(calParam,"calParam.zvb")

‘read calParam. zvb file into calibration parameter calParam.

Related Instruction ZV_CALWRITE

3.5.2. ZV_CALWRITE – Calibration Parameters Storage

Type Calibration

47

Description
It is used to save calibration parameters into specified path, the

file expansion file is zvb, which is customized binary system.

Grammar

ZV_CALWRITE(calParam, name)

calParam: ZVOBJECT type, calibration parameter that is

saved.

name: calibration parameter path, expansion name is zvb,

if there is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT calParam

ZV_CALWRITE(calParam,"calParam.zvb")

‘save calibration parameter calParam as zvb format file.

Related Instruction ZV_CALREAD

3.6. Color

3.6.1. ZV_CLRMODREAD – Color Mode Reading

Type Color

Description
It is used to read color mode file, the file expansion file is zvb,

which is customized binary system.

Grammar

ZV_CLRMODREAD(mod, name)

mod: ZVOBJECT type, color mode that is read

name: color mode path, expansion name is zvb, if there is

no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod

ZV_CLRMODREAD(mod,"mod.zvb")

‘read mod. zvb file into color mode “mod”.

Related Instruction ZV_CLRMODWRITE

48

3.6.2. ZV_CLRMODWRITE – Color Mode Storage

Type Color

Description
It is used to save color mode into specified path, the file

expansion file is zvb, which is customized binary system.

Grammar

ZV_CLRMODWRITE(mod, name)

mod: ZVOBJECT type, color mode that is saved

name: color mode path, expansion name is zvb, if there is

no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod

ZV_CLRMODWRITE(mod,"mod.zvb")

‘save color mode “mod” as zvb format file

Related Instruction ZV_CLRMODREAD

3.7. OCR

3.7.1. ZV_OCRREADSVM – SVM Classifier Reading

Type OCR

Description

It is used to read SVM classifier file that supports vector

machine and to identify characters, the file expansion file is zvb,

which is customized binary system.

Grammar

ZV_OCRREADSVM(svm, name)

svm: ZVOBJECT type, svm classifier that is read

name: svm classifier path, expansion name is zvb, if there

is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT svm

ZV_OCRREADSVM(svm,"svm.zvb")

‘read svm. zvb file into classifier “svm”.

49

Related Instruction ZV_OCRWRITESVM

3.7.2. ZV_OCRWRITESVM – SVM Classifier Storage

Type OCR

Description

It is used to save SVM classifier that supports vector machine

into specified path, the file expansion file is zvb, which is

customized binary system.

Grammar

ZV_OCRREADSVM(svm, name)

svm: ZVOBJECT type, svm classifier that is saved

name: svm classifier path, expansion name is zvb, if there

is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT svm

ZV_OCRWRITESVM(svm,"svm.zvb")

‘save classifier “svm” as zvb format file

Related Instruction ZV_OCRREADSVM

3.7.3. ZV_OCRREADMLP – MLP Classifier Reading

Type OCR

Description

It is used to read neural network MLP classifier file and to

identify characters, the file expansion file is zvb, which is

customized binary system.

Grammar

ZV_OCRREADMLP(mlp, name)

svm: ZVOBJECT type, mlp classifier that is read

name: mlp classifier path, expansion name is zvb, if there

is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT mlp

ZV_OCRREADSVM(mlp,"mlp.zvb")

50

‘read mlp. zvb file into classifier “mlp”.

Related Instruction ZV_OCRWRITEMLP

3.7.4. ZV_OCRWRITEMLP – MLP Classifier Storage

Type OCR

Description
It is used to save MLP classifier into specified path, the file

expansion file is zvb, which is customized binary system.

Grammar

ZV_OCRWRITEMLP(mlp, name)

svm: ZVOBJECT type, mlp classifier that is saved

name: mlp classifier path, expansion name is zvb, if there

is no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mlp

ZV_OCRWRITESVM(mlp,"mlp.zvb")

‘save classifier “mlp” as zvb format file

Related Instruction ZV_OCRREADMLP

3.8. Contour

3.8.1. ZV_CONTREAD – Contour Reading

Type Contour

Description
It is used to read contour file, and the file expansion file is zvb,

which is customized binary system.

Grammar

ZV_CONTREAD(cont, name)

svm: ZVOBJECT type, contour that is read

name: contour file path, expansion name is zvb, if there is

no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT cont

51

ZV_OCRREADSVM(cont,"cont.zvb")

‘read cont. zvb file into contour “cont”.

Related Instruction ZV_CONTWRITE

3.8.2. ZV_CONTWRITE – Contour Storage

Type Contour

Description
It is used to save contour file into specified path, the file

expansion file is zvb, which is customized binary system.

Grammar

ZV_CONTWRITE(cont, name)

svm: ZVOBJECT type, contour file that is saved

name: contour file path, expansion name is zvb, if there is

no expansion name, add it automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT cont

ZV_CONTWRITE(cont,"cont.zvb")

‘save contour “cont” as zvb format file

Related Instruction ZV_CONTREAD

3.9. List

3.9.1. ZV_LISTREAD – List Reading

Type List

Description
It is used to read list file, and the file expansion file is zvb or zpk,

zvb is customized binary system, and zpk is the package type.

Grammar

ZV_LISTREAD(list, name)

list: ZVOBJECT type, list that is read

name: list file path, expansion name is zvb or zpk, if there

is no expansion name, zvb is added automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

52

Example

ZVOBJECT list_param

ZV_LISTREAD(list_param, "list.zvb")

‘read list. zvb file into list “list_param”.

Related Instruction ZV_LISTWRITE

3.9.2. ZV_LISTWRITE – List Storage

Type List

Description

It is used to save list file into specified path, the file expansion

file is zvb or zpk. zvb is customized binary system, and zpk is

the package type, which can be released as directory structure

through UNPACK command. Element is named by the No., and

the image is saved as BMP format. List is the subdirectory, the

saved form is zvb.

Grammar

ZV_LISTWRITE(list, name)

list: ZVOBJECT type, contour file that is saved

name: path, expansion name is zvb or zpk, if there is no

default zvb form, zvb expansion name is added automatically.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT list_param

ZV_LISTWRITE(list_param,"list.zvb")

‘save list as list.zvb format file

Related Instruction ZV_LISTREAD

3.10. Compression Package

3.10.1. PACK – File / Directory Packing & Compressing

Type File

Description
It is used to pack file or directory as compressed file with a

suffix of .zpk.

53

Grammar

PACK(pack_name, mode, path)

pack_name: the file name after packing and compression,

with the extension of .zpk, which cannot be omitted

mode: the processing method of the existing compressed

file: 0 - report an error directly, 1 - replace the existing file in the

package, and append the file that does not exist in the package.

2 - update the existing file in the package, that is, append files

that do not exist in the package are appended

path: directory / file name to be compressed

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

PACK("123.zpk", 1, "123")

'compress the 123 folder to generate the 123.zpk file.

PACK("A:/123.zpk", 1, "123")

‘generate the compressed file 123. zpk and that is located in

the U disk directory

Related Instruction UNPACK

3.10.2. UNPACK – Packed File Decompressing

Type File

Description
It is used to decompress the compressed file with the .zpk

suffix

Grammar

UNPACK(pack_name, mode[, path])

pack_name: pack compressed file, .zpk extension, which

cannot be omitted

mode: the processing method for the existing files to be

decompressed: 0-report an error directly. 1-decompress all

files and overwrite existing files, 2-skip existing files and

decompress the remaining files.

path: decompress destination path, if it is empty or default,

it will be decompressed to the current directory.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

54

Example UNPACK("123.zpk", 1) 'Unpack 123.zpk to the directory

Related Instruction PACK

55

Chapter IV Matrix

4.1. Generate the Matrix

4.1.1. ZV_MATGENCONST – Constant Creating

Type Generate

Description
It means that matrix mat is generated through constant value

“value”, the max memory is 512M.

Grammar

ZV_MATGENCONST(mat,rows,cols,value)

mat: ZVOBJECT type, matrix that is generated

rows: rows of the matrix, range is (0, 32766]

cols: columns of the matrix, range is (0, 32766]

value: constant value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENCONST(mat,3, 3, 0)

‘generate 3*3 constant matrix, matrix values are 0

4.1.2. ZV_MATGENEYE – Size of Matrix

Type Generate

Description
It is used to generate a matrix with a size of (size, size), the max

memory is 512M.

Grammar

ZV_MATGENEYE(mat, size)

mat: ZVOBJECT type, matrix that is generated

size: rows and columns of the matrix, the range is (0,

56

32766]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3)

‘generate a matrix of 3*3 size

4.1.3. ZV_MATGENDATA – Data Creating

Type Generate

Description
It means that matrix mat is generated through data of tab_data,

the max memory is 512M.

Grammar

ZV_MATGENDATA(mat,rows,cols,tabId)

mat: ZVOBJECT type, matrix that is generated

rows: rows of the matrix, range is (0, 32766]

cols: columns of the matrix, range is (0, 32766]

tabId: TABLE index, which is used to generate data for

matrix, the number of rows*cols data. The maximum allowable

data of controller is 250 TABLE data, and same as simulator.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE(0, 0, 1, 2, 3, 4, 5, 6, 7, 8)

'store the numbers 0-8 into TABLE(0)

57

ZV_MATGENDATA(mat,3,3,0)

'save data generated in TABLE into the matrix mat

4.2. Basic Parameters

4.2.1. ZV_MATINFO – Basic Information

Type Basic parameters

Description It is used to get basic information of matrix.

Grammar

ZV_MATGENEYE(mat, tabId)

mat: ZVOBJECT type, matrix

tabId: TABLE index that outputs matrix information, TABLE

type, they are rows, columns, element size (memory control

occupied by one single element, the unit is byte) in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3 size

ZV_MATINFO(mat,0) 'output array information to TABLE (0), the

sequence is rows, columns, element size.

4.2.2. ZV_MATISVALID – Whether is Valid

Type Basic parameters

Description

It is used to judge whether the matrix is valid.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_MATISVALID(mat,tabId) or value = ZV_MATISVALID(mat)

mat: ZVOBJECT type, source matrix

tabId: TABLE index, output result is saved into TABLE

(tabId), 0 – invalid, 1 – valid

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

58

Example

ZVOBJECT mat 'define one ZVOBJECT variable

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3 size

ZV_MATISVALID(mat,0)'judge whether mat is valid, then save

result into TABLE(0)

IF TABLE(0)=0 THEN

PRINT "invalid"

END IF

4.2.3. ZV_MATROWS – Get Rows of Matrix

Type Basic parameters

Description

It is used to get the matrix’s rows.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_MATROWS(mat,tabId) or count = ZV_MATROWS(mat)

mat: ZVOBJECT type, source matrix

tabId: TABLE index, output result is saved into TABLE

(tabId)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3 size

ZV_MATROWS(mat,0)

'get the rows of the matrix, then save result into TABLE(0)

4.2.4. ZV_MATCOLS – Get Columns of Matrix

Type Basic parameters

Description

It is used to get the matrix’s columns.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar
ZV_MATCOLS (mat,tabId) or count = ZV_MATCOLS (mat)

mat: ZVOBJECT type, source matrix

59

tabId: TABLE index, output result is saved into TABLE

(tabId)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3 size

ZV_MATCOLS(mat,0)

'get the columns of the matrix, then save result into TABLE(0)

4.3. Matrix Operation

4.3.1. ZV_TRANSPOSE – Transpose

Type Matrix operation

Description It is used to find matrix transpose.

Grammar

ZV_TRANSPOSE(src,dst)

src: ZVOBJECT type, source matrix

dst: ZVOBJECT type, matrix after transposed

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat, dst

TABLE(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

ZV_MATGENDATA(mat,3,3,0)

'generate the data in TABLE to the matrix mat

ZV_TRANSPOSE(mat,dst)

‘transpose the source matrix src into dst matrix

60

4.3.2. ZV_INVERT – Inverse Matrix

Type Matrix operation

Description
It is used to find inverse matrix, method is matrix factorization

algorithm.

Grammar

ZV_INVERT(src, dst, method)

src: ZVOBJECT type, source matrix, matrix must be

phalanx.

dst: ZVOBJECT type, matrix after transposed

method: algorithm for inverse matrix

method Description

0 LU decomposition, the matrix must be

phalanx.

1 Feature values decomposition, the matrix

must be symmetric.

2 Cholesky decomposition, the matrix must be

positive definite.

3 SVD decomposition

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat, dst

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3 size

ZV_INVERT (mat, dst, 3) ‘use SVD decomposition to find the

inverse matrix, and it can find the generalized inverse matrix.

4.3.3. ZV_MATRIXMULT – Matrix Multiple

Type Matrix operation

Description
Two matrices execute matrix multiple, and the column of the

first matrix needs to be same as the rows of the second matrix.

61

Grammar

ZV_MATRIXMULT (mat1, mat2, dst)

mat1: ZVOBJECT type, the multiplier of matrix

multiplication

mat2: ZVOBJECT type, the multiplicand of matrix

multiplication

dst: ZVOBJECT type, the result of matrix multiplication

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat1, mat2, dst

ZV_MATGENEYE(mat1,3)

ZV_MATGENCONST(mat2,3,3,2)

ZV_MATRIXMULT(mat1,mat2,dst)

‘multiply two matrices, dst is the result

4.4. Access

4.4.1. ZV_MATGETVAL – Get the Value

Type Access

Description

It is used to get the matrix value of specified position into

TABLE.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_MATGETVAL(mat,row,col,tabId)

or val= ZV_MATGETVAL(mat,row,col)

mat: ZVOBJECT type, source matrix

row: get the row coordinates of the value

col: get the column coordinates of the value

tabId: TABLE index, obtained value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

62

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATGETVAL(mat,1,1,0) 'get the value of coordinate (1,1)

and store it in TABLE(0)

4.4.2. ZV_MATSETVAL – Set the Value

Type Access

Description It is used to modify the matrix value of specified position.

Grammar

ZV_MATSETVAL(mat,row,col,val)

or val= ZV_MATGETVAL(mat,row,col)

mat: ZVOBJECT type, source matrix

row: modify the row coordinates of the value

col: modify the column coordinates of the value

val: value after modification

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATSETVAL(mat,1,1,5) 'modify the value of specified

position as 5

63

4.4.3. ZV_MATGETROW – Get One Row

Type Access

Description It is used to get the data of specified row into TABLE.

Grammar

ZV_MATGETROW(mat,row,tabLen,tabId)

mat: ZVOBJECT type, source matrix

row: get the row index of data

tabLen: max available length of result in TABLE, it should

be ≥ matrix column

tabId: TABLE index, obtained row data

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATGETROW(mat,1,3,0) 'save the data in row 2 in order into

TABLE (0) (starting index of TABLE)

4.4.4. ZV_MATSETROW – Set the Row

Type Access

Description It is used to modify the data of specified row.

Grammar

ZV_MATSETROW(mat,row,tabNum,tabId)

mat: ZVOBJECT type, the matrix to be modified

row: the row to be modified, 0 is the starting row number

tabNum: the number of data in tabId, which must be equal

to the number of matrix columns

tabId: TABLE index, row data

64

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATSETVAL(mat,1,3,0) 'save 3 data of TABLE starting index

into the first row of the matrix in order

4.4.5. ZV_MATGETCOL – Get One Column

Type Access

Description It is used to get the data of specified column into TABLE

Grammar

ZV_MATGETCOL(mat,row,tabLen,tabId)

mat: ZVOBJECT type, source matrix

col: obtained id of column, 0 is the starting column

tabLen: max available length of result in TABLE, it should

be ≥ matrix row

tabId: TABLE index, obtained column data

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATGETCOL(mat,1,3,0) 'save the data in column 2 in order

65

into TABLE (0) (starting index of TABLE)

4.4.6. ZV_MATSETCOL – Set the Col

Type Access

Description It is used to modify the data of specified column.

Grammar

ZV_MATSETCOL(mat,col,tabNum,tabId)

mat: ZVOBJECT type, the matrix to be modified

col: the column to be modified, 0 is the starting column

number

tabNum: the number of data in tab_val, which must be

equal to the number of matrix rows

tabId: TABLE index, column data

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATSETCOL(mat,1,3,0) 'save 3 data of TABLE starting index

into the first column of the matrix in order

4.4.7. ZV_MATGETRANGE – Get Sub-Region Value

Type Access

Description It is used to get the matrix data of specified position into TABLE

66

Grammar

ZV_MATGETRANGE(mat,y1,y2,x1,x2,tabId)

mat: ZVOBJECT type, source matrix

y1: starting row of the matrix, including the current row

y2: ending row of the matrix, including the current row

x1: starting column of the matrix, including the current

column

x2: ending column of the matrix, including the current

column

tabId: TABLE index, obtained sub-region data

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATGETRANGE(mat,0,1,0,1,0) 'get the data of the region

that includes row 1 – row 2 and column 1 – column 2, then save

them into TABLE starting index TABLE (0) in order.

4.4.8. ZV_MATSETRANGE – Set Sub-Region Value

Type Access

Description It is used to set the data of TABLE into specified area of matrix.

Grammar

ZV_MATSETRANGE(mat,y1,y2,x1,x2,tabId)

mat: ZVOBJECT type, source matrix

y1: starting row of the matrix, including the current row

y2: ending row of the matrix, including the current row

x1: starting column of the matrix, including the current

column

x2: ending column of the matrix, including the current

column

67

tabId: TABLE index, obtained sub-region data

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATSETRANGE(mat,0,1,0,1,0) 'set the data of TABLE (0) to

the region that includes row 1 – row 2 and column 1 – column

2

4.4.9. ZV_MATGETSUB – Get Sub-Region Matrix

Type Access

Description It is used to get the sub-region of matrix.

Grammar

ZV_MATGETSUB(mat, sub, x, y, width, height)

mat: ZVOBJECT type, source matrix

sub: ZVOBJECT type, obtained sub matrix

x: x coordinate of subregion

y: y coordinate of subregion

width: width of subregion

height: height of subregion

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT sub_mat, mat

68

ZV_MATGENEYE(mat,3) 'generate a matrix of 3*3

ZV_MATGETSUB(mat, sub_mat, 0, 0, 2, 2)

'in position mat (0,0), select one subregion matrix into sub

4.4.10. ZV_MATSETSUB – Set Sub-Region

Type Access

Description It is used to modify subregion.

Grammar

ZV_MATSETSUB(mat, sub, x, y)

mat: ZVOBJECT type, matrix to be modified

sub: ZVOBJECT type, matrix for modification

x: x coordinate of subregion that is to be modified

y: y coordinate of subregion that is to be modified

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT sub_mat, mat

ZV_MATGENCONST(sub_mat,3,3,0) 'generate a 3*3 constant

matrix, the matrix values are all 0

ZV_MATGENCONST(mat,5,5,3) 'generate a 5*5 constant matrix,

the matrix values are all 3

ZV_MATSETSUB(mat,sub_mat,1,1) 'set the value of sub_mat

matrix at mat(1,1) position

4.4.11. ZV_MATSETCONST – Constant Filling

Type Access

Description Fill the matrix through constant val.

69

Grammar

ZV_MATSETCONST(mat, val)

mat: ZVOBJECT type, matrix

val: filling value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENCONST(mat,3,3,0) 'generate a 3*3 constant matrix,

the matrix values are all 0

ZV_MATGENCONST(mat,6) 'set the matrix values are all 6

4.4.12. ZV_MATCOPY – Copy

Type Access

Description It is used to copy the matrix.

Grammar

ZV_MATSETCONST(mat, dst)

mat: ZVOBJECT type, source matrix

dst: ZVOBJECT type, copied matrix

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_MATGENCONST(mat,3,3,6) 'generate a 3*3 constant matrix,

the matrix values are all 6

ZV_MATCOPY(mat,dst) 'copy mat matrix into dst

70

4.4.13. ZV_MATSORT – Sorting

Type Access

Description It is used to sort for matrix rows and columns.

Grammar

ZV_MATSORT(mat,sortMat,idx,isAsec,isSortCol)

mat: ZVOBJECT type, matrix

sortMat: ZVOBJECT type, sorted matrix

idx: used to specify the row number or column number for

sorting, which means the property value of corresponding row

or column of idx is for sorting, for example, the row 0 of shape

matched result represents the fraction.

isAsec: 1 - ascending, 0 - descending

isSortCol: 1 - sort column, 0 - sort row

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat 'assume each column corresponds to an

attribute for matched result matrix

ZVOBJECT dst

TABLE(0,0.5,1,0,15,1,0.9,10,70,-5,1.5,0.01,154,200,170,0.8)

ZV_MATGENDATA(mat,3,5,0) 'use the data in TABLE(0) to

generate a 3*5 matrix

ZV_MATSORT(mat,dst,0,0,0) 'idx selects the first column (score

attribute), and arranges the score attribute of the matrix mat in

descending order by row

71

4.5. Transformation

4.5.1. ZV_MATRESHAPE – Adjust Rows & Columns

Type Transformation

Description
It is used to adjust rows and columns.

Note: the adjusted total size needs to be strictly equal.

Grammar

ZV_MATRESHAPE(mat,row)

mat: ZVOBJECT type, matrix

row: rows after adjusted, if it is 0, getting the original value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat, dst

ZV_MATGENCONST(mat,2,3,1) 'generate a 2*3 constant matrix,

the matrix values are all 1

ZV_MATRESHAPE(mat,3) 'adjust the 2x3 matrix to 3x2 matrix

72

Chapter V Image

5.1. Image Generation

5.1.1. ZV_IMAGECONST – Image Generating from Data

Type Generate

Description

It is used to generate the image through constant, and for the

image size, it is recommended to be a multiple of 4, and the

maximum memory is 512M.

Grammar

ZV_IMAGECONST(dst, w, h, ch, type, tabId)

dst: ZVOBJECT type, the generated image

w: the width of the generated image, range is (0,32766]

h: the height of the generated image, range is (0,32766]

cn: the number of channels of the generated image

type: the type of generated image

Type Description

0 8-bit without symbol 8U

1 16-bit without symbol 16U

2 32-bit with symbol 32S

3 64-bit with symbol 64F

 tabId: TABLE index, constant values of each channel of the

image, one channel occupies one TABLE space.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

TABLE(0,255,128,64) 'store the constant value of each

channel in the TABLE whose starting index is 0 (TABLE (0))

ZV_IMGGENCONST(img,4,4,3,0,0) 'use the data of TABLE(0)

to generate an 8-bit without symbol 4*4 image img, whose

number of channels is 3

73

5.1.2. ZV_IMGTILE – Image Combination

Type Generate

Description
It is used to combine image tiles in an image list into one large

image.

Grammar

ZV_IMGTILE(imgs,img,numCols,type)

imgs: the image list, ZVOBJECT type and list type, the

number and type of image channels in the list must be the

same, and the size in the splicing direction must be the same

img: the image generated by tile combination, ZVOBJECT

type

numCols: the number of columns of the image tile, >1

type: image tiling method, as follows

Type Description

0 Horizontal to the right, Z order type

1 Horizontal to the right, S round-trip

2 Vertically down, Z-sequential

3 Vertically down, S round-trip

4 Horizontal to the left, Z order type

5 Horizontal to the left, S round-trip

6 Vertically up, Z-sequential

7 Vertically up, S round-trip

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT imgList 'define image list

ZVOBJECT img, dst

ZV_READIMAGE(img1,"logo.png",0) 'read image

ZV_LISTINSERT(img1,imgList,-1) 'insert list

ZV_IMGTILE(imgList,dst,2,0)

'tile the images in the image list into a large image in a

horizontal to right Z order

74

5.2. Image Acquisition

5.2.1. Camera Scanning

5.2.1.1. CAM_SCAN – Scan All Cameras

Type Image acquisition related.

Description

It is used to scan cameras connected to the system and record

all cameras information.

Note:

➢ The camera and the controller need to be connected

directly or use a Gigabit HUB, otherwise the scan may fail

or affect the stability of the acquisition (acquisition failure,

frame loss, image loss, etc., the specific phenomenon is

related to the camera)

➢ It should be noted that both display and acquisition may

cause the effect of frame loss, which needs to be

distinguished. Display may result in the entire image not

being updated, not in missing parts.

➢ Notes for Dahua cameras:

For the VPLC516E controller, after the bus axis is enabled,

there will be an error when scanning Dahua cameras, such

as printing "recv no pdo 2". If the object is a Panasonic or

Raytheon drive, no problem, but if it is a Delta drive, the axis

will appear abnormal.

75

Grammar

CAM_SCAN(type,flag=0)

type: scan type includes "zmvcbase", "zmotion", "mvision",

"basler", "mindvision", "huaray", "dvpcamera", "daheng" and

other types, and it supports multiple types mixed, but different

cameras may affect the stability. It is recommended to use the

same type of camera. When the type is empty, the default type

will be used for scanning. The default type is "zmvcbases". The

corresponding cameras of the scanning type are as follows:

"zmvcbase" USB drive free camera

"zmotion" Zmotion camera

"mvision" Hikvision camera

"basler" basler camera

"mindvision" mindvision camera

"huaray" Dahua camera

"dvpcamera" do3think camera

"daheng" daheng camera

 flag: scan method, default value 0 means rescanning all, 1

means only new added camera is scanned.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

CAM_SCAN("mvision") ‘scan the camera

CAM_COUNT(0) ‘the number of cameras are saved into

TABLE (0)

IF (0 = TABLE(0)) THEN

PRINT "No Camera"

RETURN

ENDIF

CAM_SEL (0) ‘select the camera of No.0

Related Instruction CAM_SEL (select acquisition devices)

5.2.1.2. CAM_COUNT – Camera Numbers

Type Image acquisition related.

Description It is used to get the number of scanned cameras, the upper limit

76

of the scan index, that is, the value range of scanId is

[0,CAM_COUNT()-1].

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

CAM_COUNT(tabId) or num = CAM_COUNT()

 tabId: TABLE index, a kinds of output parameter, the

number of cameras

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example CAM_COUNT (0) ‘get the number of scanned cameras

Related Instruction CAM_SCAN (scan the camera)

5.2.1.3. CAM_LISTLIB – Get Camera Library Type that are Loaded

Type Image acquisition related.

Description

It is used to get the camera type that has been scanned and

loaded, if it is successful, which means camera library plug-in

is installed normally.

Grammar

CAM_LISTLIB(maxLen, tabId) or libs = CAM_LISTLIB()

maxLen: the maximum length allowed

tabId: output the camera type as a string and store it in the

TABLE whose starting index number is tabId

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
CAM_LISTLIB(32,0)

'get the camera library type that has been loaded successfully

Related Instruction CAM_SCAN (scan the camera)

5.2.1.4. CAM_FINDLIB – Get Available Camera Library Type

Type Image acquisition related.

Description
It is used to get available camera library type, that is, find out

all camera library types by file scanning method.

77

Grammar

CAM_FINDLIB(maxLen, tabId)

maxLen: the maximum length allowed

tabId: output the camera type as a string and store it in the

TABLE whose starting index number is tabId

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example CAM_FINDLIB(64,0) 'get available camera library types

Related Instruction CAM_SCAN (scan the camera)

5.2.1.5. CAM_QUERYLIB – Check Camera Library Information

Type Image acquisition related.

Description
It is used to check camera library information, the returned

result is multiple character strings, parting through “;”.

Grammar

Function syntax:

infos = CAM_QUERYLIB(camType,queryType)

camType: the camera type string to be queried, such as

"zmvcbase" , "mindvision" , "basler" , "huaray" , "mvision" ,

"zmotion" , "dvpcamera"

queryType: query type, specifically related to the camera

library, may report unsupported errors, as shown in the

following table:

Type Description

0 All parameters In the case of

supporting multiple

cameras, it is the

parameter of the

Gigabit camera

1 Read-only parameters

2 Write-only parameters

3 In execution status

4 Error information
Details of the last

time error reporting

5 USB3 camera parameters If camera doesn’t

support USB3, error

of unsupported will
6

USB3 camera read-only

parameters

78

7
USB3 camera write-only

parameters

report.

8 Interface version No.

9 Modification version No.

10
The number of opened

cameras

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ? CAM_QUERYLIB("zmotion",4) ‘print error information

Related Instruction CAM_SCAN (scan the camera)

5.2.2. Camera Using

5.2.2.1. CAM_SEL – Select Acquisition Devices

Type Image acquisition related.

Description

It is used to select the camera scanId as the serial No. of the

currently operating camera, and the camera will automatically

open. When there are multiple tasks and each task is

responsible for one camera, such as two or more cameras, use

CAM_SEL in each task to select the camera for following

acquisition.

Grammar

CAM_SEL(scanId)

scanId: camera serial number when scanning

Function syntax:

scanId= CAM_SEL(), get the camera selected by the current

task

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

CAM_SCAN("mvision") ‘scan the camera

CAM_COUNT(0) ‘the number of cameras is saved into

TABLE (0)

IF (0 = TABLE(0)) THEN

PRINT "No Camera"

79

RETURN

ENDIF

CAM_SEL(0) 'select the camera of No.0

Related Instruction CAM_SCAN (scan the camera)

5.2.2.2. CAM_GETINFO – Camera Information

Type Image acquisition related.

Description

It is used to obtain the information of the scanned camera, such

as manufacturer name, SN number, IP, MAC, user-defined name

(UserID), device type (GIGE), etc. Different cameras are with

different parameters.

Grammar

CAM_GETINFO(prop,maxLen,tabId)

prop: enumeration value of property to be obtained, please

refer to below form:

Value Description

-1 Scanning type of camera

0 SN

1 Model

2 Device ID

3 Device name

4 Display name

5 Interface type

6 Port No.

7 Mac address

8 IP address

9 Host IP address

10 Name defined by user

11 Parameter defined by user

maxLen: the maximum length allowed for obtained result,

including terminator

tabId: TABLE index, starting position of obtained character

string property value

Controller It is valid in controllers that support ZV function or they belong

80

to 5XX series or above.

Example

DIM tmp (32) ‘define variable

CAM_SCAN() ‘scan the camera

CAM_COUNT(0) ‘the number of cameras is saved into

TABLE (0)

FOR i = 0 TO TABLE(0)-1

CAM_SEL(i) 'select the camera of No.i

CAM_GETINFO (0, 16, 0) 'get SN No. of camera, and save it

into TABLE (0)

DMCPY tmp(0), TABLE(0), 32

IF 0 = STRCOMP(tmp, "22533411") THEN

EXIT

FOR ENDIF

NEXT

Related Instruction CAM_SCAN (scan the camera)

5.2.2.3. CAM_GRAB – Grab One Frame

Type Image acquisition related.

Description

The current camera index captures one frame, and the

corresponding trigger mode is the capture mode (-1). When

using the CAM_GRAB command to capture images, it is not

necessary to call the start capture command CAM_START

before this command, and the CAM_GRAB command will

automatically open the "start capture command CAM_START".

In order to avoid using the last image or to reduce the error

checking processing, it is recommended to clear or zero the

image before acquisition through ZV_CLEAR(img) or

ZV_IMGSETCONST(img,0)

Grammar
CAM_GRAM (img)

 img: ZVOBJECT type, sampled image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZV0BJECT img

81

CAM_SCAN("basler") CAM_COUNT(0)

IF (0 = TABLE(0)) THEN

PRINT "No Camera"

RETURN

ENDIF

CAM_SEL(0)

CAM_GRAB(img)

Related Instruction CAM_SCAN (scan the camera)

5.2.2.4. CAM_SETMODE – Set Trigger Mode

Type Image acquisition related.

Description
It is used to set camera triggering mode. While setting, it may

stop camera acquisition actively.

Grammar

CAM_SETMODE(mode)

 mode: trigger mode: -1 is the acquisition mode; 0 is the

soft trigger mode; 1~N is the external trigger mode,

corresponding to different trigger sources of external trigger in

turn, and they are relative to the external camera wiring. For

example, 1 corresponds to the first trigger source Line0, 2

corresponds to the second trigger source Line1, and 3

corresponds to Line2. Please note that the trigger source of the

external trigger mode needs to be used in conjunction with the

"LineMode" parameter, see the camera parameter for details.

When the camera uses the external trigger mode, the camera

cable needs to be correctly connected to the external device.

For the connection method of the external line "Line0", "Line1",

"Line2" and the external device, please refer to the IO cable

connection instructions of the corresponding camera, such as

Hikvision camera Please refer to the "Hikvision Camera IO

Cable Wiring Instructions" document.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example CAM_SETMODE(0) ‘set camera as soft trigger mode

82

/

CAM_SETMODE(1) ‘set camera as external trigger mode, and

the trigger source is Line0

5.2.2.5. CAM_TRIGGER – Camera Soft Trigger

Type Image acquisition related.

Description

This is the soft trigger signal.

Send it to trigger acquisition in the camera's soft trigger mode.

The function is similar to CAM_SETPARAM("TriggerSoftware",

0), but there is additional processing inside the command to

enhance protection, and the execution time will be longer

It is recommended to use CAM_TRIGGER(), which can provide

better protection.

Grammar CAM_TRIGGER ()

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

CAM_SCAN("basler") ‘scan basler camera

CAM_COUNT(0) ‘get the number of scanned cameras

IF (0 = TABLE(0)) THEN

PRINT "No Camera"

RETURN

ENDIF

CAM_SEL(0) ‘select camera of No.0

CAM_SETMODE(0) ‘set trigger mode as soft trigger mode

CAM_START(1) ‘open camera acquisition, and assign

the cache number as 1

CAM_TRIGGER() ‘use soft trigger command to trigger

camera shooting, and trigger once, take picture once

CAM_GET(img,0) ‘get the image of assigned id No.0 from

camera cache into “img”

83

5.2.2.6. CAM_STRAT – Start to Capture

Type Image acquisition related.

Description

It is used to start the acquisition of the camera. The parameter

is the number of buffers. After the acquisition starts, the images

will be placed in the buffer in turn, and some parameters of the

camera will not be able to be modified. This command is

usually used when the camera acquires images in soft trigger

mode or hard trigger mode. Please note it needs to use this

command to start camera acquisition firstly, usually specifying

the number of buffers as 1, and multiple buffers are usually

used for multiple triggers in a short period of time, the number

of buffers is equal to the number of triggers, and the triggered

images are placed in the buffer in turn, and then processed

separately.

Grammar
CAM_START (bufCnt)

 bufCnt: specified buffer numbers

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

CAM_START(1) ‘start to capture, the buffer number is 1

/

CAM_START(2) ‘start to capture, the buffer number is 2

Related Instruction CAM_STOP (stop acquisition)

5.2.2.7. CAM_STOP – Stop Acquisition

Type Image acquisition related.

Description It is used to stop acquisition.

Grammar CAM_STOP ()

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example CAM_START() ‘stop capturing

Related Instruction CAM_START (start acquisition)

84

5.2.2.8. CAM_GET – Get the Image

Type Image acquisition related.

Description

It is used to read the image from the specified buffer of the

camera. The corresponding trigger mode is soft trigger mode

(0) or external trigger mode (1~N). Before using the CAM_GET

command to acquire the image, call the start acquisition

command “CAM_START”. Since the trigger mode is multi-

threaded processing, in order to avoid image confusion, the

triggered image can only be read once, and the cached image

will be cleared after reading. If the cached image has not been

read, the image captured by the next trigger will overwrite the

old image, but it should be noted that the old image may still be

read by using CAM_GET before the acquisition is completed,

that is, the image read after the trigger is the last acquired

image, then reading the image after each triggered to avoid this

problem.

In order to avoid using the last image or to reduce the error

checking processing, it is recommended to clear or zero the

image before acquisition through ZV_CLEAR(img) or

ZV_IMGSETCONST(img,0).

Grammar

CAM_GET(img，bufId,timeout=-1)

img: ZVOBJECT type, obtained image

bufId: specified buffer id, starting from No.0

timeout: timeout time, ≥0, default parameter -1 uses

system timeout parameter.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

Example 1: obtain one single image through soft trigger

ZVOBJECT img

CAM_SCAN("basler") ‘scan basler camera

CAM_COUNT(0) ‘obtained the number of scanned camera

IF (0 = TABLE (0)) THEN

‘if the scanned camera number is 0, then return

PRINT “No Camera”

85

RETURN

ENDIF

CAM_SEL(0) ‘select camera of No.0

CAM_SETMODE(0) ‘set trigger mode as soft trigger mode

CAM_START(1) ‘open camera acquisition, and assign

the buffer number as 1

CAM_SETPARAM (“TriggerSoftawre”, 0)

‘use soft trigger command to trigger camera shooting, and

trigger once, take picture once

CAM_GET(img,0) ‘get the image of assigned id No.0 from

camera cache into “img”

Example 2: achieve continuous acquisition through soft trigger

ZVOBJECT img

CAM_SCAN("basler") ‘scan basler camera

CAM_COUNT(0) ‘obtained the number of scanned camera

IF (0 = TABLE (0)) THEN

‘if the scanned camera number is 0, then return

PRINT “No Camera”

RETURN

ENDIF

CAM_SEL(0) ‘select camera of No.0

CAM_SETMODE(0) ‘set trigger mode as soft trigger mode

CAM_START(1) ‘open camera acquisition, and assign

the buffer number as 1

WHILE (1)

CAM_SETPARAM (“TriggerSoftawre”, 0)

‘use soft trigger command to trigger camera shooting, and

trigger once, take picture once

CAM_GET(img,0) ‘get the image of assigned id No.0

from camera cache into “img”

WEND

Example 3: single acquisition through external trigger mode

(move_op mode)

86

ZVOBJECT img

CAM_SCAN("basler") ‘scan basler camera

CAM_COUNT(0) ‘obtained the number of scanned camera

IF (0 = TABLE (0)) THEN

‘if the scanned camera number is 0, then return

PRINT “No Camera”

RETURN

ENDIF

CAM_SEL(0) ‘select camera of No.0

CAM_SETMODE(1) ‘set trigger mode as external trigger

CAM_START(1) ‘open camera acquisition, and assign

the buffer number as 1

AXIS_ZSET(0)=2 ‘select precision output function

Base(0) ‘select axis 0

MOVEABS(100) ‘move to machine coordinate 100

MOVE_OP(0,ON)

MOVE_OP(0,OFF) ‘falling edge shooting, operate OUT

(OP), trigger to take the picture

MOVEABS(200) ‘move to machine coordinate 200

CAM_GET(img,0) ‘get the image of assigned id No.0

from camera cache into “img”

CAM_STOP() ‘stop acquisition

Example 4: single acquisition through external trigger (hw

mode)

ZVOBJECT img

CAM_SCAN("basler") ‘scan basler camera

CAM_COUNT(0) ‘obtained the number of scanned camera

IF (0 = TABLE (0)) THEN

‘if the scanned camera number is 0, then return

PRINT “No Camera”

RETURN

ENDIF

CAM_SEL(0) ‘select camera of No.0

CAM_SETMODE(1) ‘set trigger mode as external trigger

87

CAM_START(1) ‘open camera acquisition, and assign

the buffer number as 1

AXIS_ZSET(0)=2 ‘select precision output function

Table (100, 99, 100, 101) ‘trigger OP to invert the machine

coordinates

HW_PSWITCH (2)

Hw_pswitch (1, 0, 0, 100, 102, 1) ‘operate OP0 to invert the

position

Base(0) ‘select axis 0

MOVEABS(200) ‘axis 0 moves to machine coordinate

200, here, camera is triggered to take the picture by falling edge,

that is, at position of 100-101, image is saved into buffer 0

automatically.

CAM_GET(img,0) ‘get the image of assigned id No.0

from camera cache into “img”

CAM_STOP() ‘stop acquisition

5.2.3. Camera Parameters

Camera parameters include camera-related functions such as exposure time, packet

sending delay, etc., which can be obtained or set through the CAM_GETPARAM and

CAM_SETPARAM commands.

Camera parameters are divided into 7 types of parameters, including Boolean

parameters, enumeration parameters, command parameters, string parameters, integer

parameters, floating point parameters, and register parameters.

The controller supports Hikvision (mvision), Basler, mindvision, an Dahuang (huaray).

Different cameras have their own camera parameters. For details, please refer to

Appendix II, which lists the commonly used function parameters of the four cameras.

5.2.3.1. CAM_GETEXPOSURE – Get Exposure Time

Type Image acquisition related.

88

Description

It is used to get current camera’s exposure time, the unit is us.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

CAM_GETEXPOSURE(tabId) or

number = CAM_GETEXPOSURE()

 tabId: TABLE index, get the camera exposure time

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example CAM_GETEXPOSURE ‘save exposure time into TABLE (0)

Related Instruction CAM_SETEXPOSURE (set exposure time)

5.2.3.2. CAM_SETEXPOSURE – Set Exposure Time

Type Image acquisition related.

Description

It is used to set the exposure time of the current camera, the

unit is us, the exposure time controls the exposure time of the

photosensitive element of the camera chip to the light, the

greater the exposure time, the brighter the image

Grammar
CAM_SETEXPOSURE(time)

 time: camera exposure time

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
CAM_SETEXPOSURE (3000)

‘set current camera’s exposure time as 3000us

Related Instruction CAM_GETEXPOSURE (get exposure time)

5.2.3.3. CAM_GETPARAM – Get Parameters

Type Image acquisition related.

Description

It is used to get camera’s parameter values or expansion

information, the result is in string.

And it supports extended syntax, that is, add a suffix after the

name such as paramName: suffix, please refer to Appendix II

89

for details of parameter names

Grammar

CAM_GETPARAM(paramName, maxLen, tabId)

paramName: the parameter name is a string, which can be

input directly or the extended form of the parameter name

maxLen: the maximum length allowed for tabId

tabId: the TABLE starting index where the read parameter

value information is placed

paramName is explained as follows:

➢ paramName -- the normal form of the parameter

name, get the value corresponding to the parameter

name

➢ paramName:Range -- the expanded form of the

parameter name with Range as the suffix, get the

value range of the parameter. And the Range suffix

only supports integer, floating point, Boolean,

enumeration and other parameters.

For integer and floating-point parameters, the values

are separated by ":" colons. For example, if the parameter

has a step size limit, it will output the form

"minValue:maxValue:step", and if there is no step size limit,

it will output "minValue:maxValue ".

For boolean parameter values, it is separated by ","

commas, such as "0,1".

For enumeration parameter values, it is also separated

by "," commas, such as "enum1, enum2, enum3,..." this

form

➢ paramName:Num -- the extended form of the

parameter name with Num as the suffix, the Num

suffix only supports enumeration type parameters,

and obtains the number of enumeration values.

➢ paramName:Len -- the extended form of the

parameter name with Len as the suffix, the Len suffix

only supports string type parameters, get the length

of the output string.

90

➢ paramName:Str -- the extended form of the

parameter name with Str as the suffix, the Str suffix

only supports enumeration type parameters, get the

enumeration symbol

➢ paramName:Type -- the extended form of the

parameter name with Type as the suffix. The Type

suffix supports all parameter types, and the data type

of the parameter is obtained, as shown in the

following table

Type value Description

-1 Unsupported or error

0 Boolean type

1 Integer type

2 Floating type

3 Character string type

4 Enumeration type

5 Command type

6 Register type

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

Example 1:

'get the value of the integer parameter "Width", that is, the width

of the image

DIM tmp(32)

CAM_GETPARAM("Width", 32, 0) 'If the value is 1280

DMCPY tmp(0), TABLE(0), 32

?"Image width = "tmp

Example 2:

'get the number of enumeration values of the enumeration

parameter "TriggerMode"

DIM tmp(32)

CAM_GETPARAM("TriggerMode:Num", 20, 0) 'If the value is 2

DMCPY tmp(0), TABLE(0), 32

?"Trigger Mode = "tmp

91

Example 3:

'get the range of the floating point parameter " ExposureTime "

DIM tmp(32)

CAM_GETPARAM("ExposureTime:Range", 32, 0) 'If the value is

1:1000000

DMCPY tmp(0), TABLE(0), 32

?"Exposure Time = "tmp

Related Instruction CAM_SETPARAM (set parameters)

5.2.3.4. CAM_SETPARAM – Set Parameters

Type Image acquisition related.

Description

It is used to set camera’s parameter values, and values are

string.

And it supports extended syntax, that is, add a suffix after the

name such as paramName: suffix, please refer to Appendix II

for details of parameter names

Grammar

CAM_SETPARAM(paramName, value)

paramName: parameter name, the parameter name is a

string

value: parameter values, in string

paramName is explained as follows:

➢ paramName -- the normal form of the parameter

name, get the value corresponding to the parameter

name

➢ paramName:Str -- the extended form of the

parameter name with Str as the suffix, the Str suffix

only supports enumeration type parameters, set

parameters in the format of enumeration symbol

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example Example 1:

92

CAM_SETPARAM("GevSCPD", "4000")

'set the camera sending delay, indirectly set the frame rate

Example 2:

CAM_SETPARAM("PixelFormat", "17301505") 'set the camera

pixel format to grayscale format by way of enumeration value

Example 3:

CAM_SETPARAM("PixelFormat:Str", "Mono8") 'set the camera

pixel format to grayscale format by means of enumeration

symbols

Related Instruction CAM_GETPARAM (get parameters)

5.2.3.5. CAM_GETPARAMTYPE – Get Parameters Types

Type Image acquisition related.

Description

it is used to get the type of camera parameters.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

CAM_GETPARAMTYPE(paramName,tabId)

or type = CAM_GETPARAMTYPE()

 paramName: camera parameter name

tabId: the TABLE index, getting the camera parameters’

type

Type value Description

-1 Unsupported or error

0 Boolean type

1 Integer type

2 Floating type

3 Character string type

4 Enumeration type

5 Command type

6 Register type

Controller It is valid in controllers that support ZV function or they belong

93

to 5XX series or above.

Example CAM_GETPARAMTYPE("zmotion",0) 'get parameters’ type

5.2.3.6. CAM_GETPARAMMODE – Get Parameters Access Mode

Type Image acquisition related.

Description

it is used to get the access mode of camera parameters.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

CAM_GETPARAMMODE(paramName,tabId)

or mode = CAM_GETPARAMMODE()

paramName: camera parameter name

tabId: the TABLE index, getting the camera parameters’

access mode

Mode value Description

-1 Unsupported or error

0 Failure

1 Writing & Reading

2 Read only

3 Write only, usually is command

4
Writing & Reading, but it is read-only

when in acquisition state

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
CAM_GETPARAMMODE("zmotion",0)

'get parameters’ access mode

5.2.3.7. CAM_LOADCONFIG – Load Configured Parameters/Files

Type Image acquisition related.

Description

It is used to load the camera’s default parameters and built-in

parameters, or load parameters from a file. The instruction

parameter config_data indicates the source of the parameters.

94

If it is empty, default parameters are loaded. The string at the

beginning of the colon identifies the loaded user configuration

set UserSet, such as ":UserSet1"; otherwise a file name is

recognized, and the corresponding file parameters are loaded.

If the camera has a lot of parameters to configure, it can save

all the parameters in a file, and directly use this command to

load the file, which can simplify the configuration code of the

camera

Grammar

CAM_LOADCONFIG(configData)

 configData: character string, loaded is parameter

configuration information

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example CAM_LOADCONFIG(":UserSet1")

Related Instruction CAM_GETPARAM (get parameters)

5.2.3.8. CAM_SAVECONFIG – Save Configured Parameters/Files

Type Image acquisition related.

Description

It is used to save the built-in parameters or parameter files of

the camera, and the command “config_data” indicates the

source of the parameters: The character string beginning with

a colon is recognized as the saved user configuration set

UserSet, such as ":UserSet1", which cannot be the default set

0; otherwise, it is recognized as the file name, and saves the

parameters to the corresponding file.

Grammar

CAM_SAVECONFIG(configData)

 configData: character string, save parameter configuration

into target position

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example CAM_SAVECONFIG(":UserSet1")

95

5.2.3.9. CAM_DATASIZE – Image Data Size

Type Image acquisition related.

Description It is used to get how size the camera image data occupies.

Grammar
CAM_DATASIZE(tabId) or size = CAM_DATASIZE()

 tabId: TABLE index, obtained image data size

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

CAM_DATASIZE(0)

'store the memory size of the camera image data in the array

table(0)

5.3. Image Showing

5.3.1. Latch

5.3.1.1. ZV_LATCH – Latch Showing Image

Type Latch

Description

According to the current latch information, convert the image

img to be displayed to the latch area specified by the latch

channel number latch_id, and the latch information is updated.

The latch information may have changes such as legality

checks and range restrictions.

A latch refers to a protected buffer area, only single-channel

and three-channel are supported, 8u type.

Note: due to the limitation of the display mode, the display

command cannot be called frequently and continuously,

otherwise the latter command may be lost, that is, the

command triggers the protection mechanism without updating

the display and returns directly.

Display commands include ZV_LATCH, ZV_LATCHTRANS and

96

ZV_LATCHCLEAR.

Grammar

ZV_LATCH (img, latchId, type)

img: ZVOBJECT image type, image to be shown

latchId: latch channel No., which corresponds to the digital

behind variable @ZV that is quoted by background picture of

control, such as, channel 0 corresponds to @ZV0

type: showing method, 0 – keep current scaling ratio and

translate, 1 – showing in the center, that is, the max size that

can show

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"logo.png",0)

‘read image in original image format

ZV_LATCH(img,0) 'show image “img” that relates to channel 0

Related Instruction ZV_READIMAGE (read image)

5.3.1.2. ZV_LATCHINFO – Get Latch Information

Type Latch

Description

It is used to get latch information specified by latch channel

No., they are in the sequence of scale ratio, x offset, y offset,

window width, window height, background color.

Grammar Command syntax:

97

ZV_LATCHINFO(latchId, tabId)

latchId: latch channel number

tabId: TABLE index, latch information, occupying 6 data

spaces

ZV_LATCHINFO(latchId, tabNum, tabId)

latchId: latch channel No.

tabNum: the amount of space available for the tabId

tabId: TABLE index, latch information, output zoom ratio, x

offset, y offset, window width, window height, background color,

image width, image height, frame width, frame height in

sequence according to the number of tab_num

Function syntax:

?ZV_LATCHINFO(latchId)

Output the above abbreviated parameter names and parameter

values in readable text.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"logo.png",0)

'read image in original image format

ZV_LATCH(img,0) 'display picture

ZV_LATCHINFO(0,0) 'save the data of latch channel 0 from

talbe(0) to store information sequentially

?TABLE(0) ‘zoom ratio

?TABLE(1) ‘x offset

?TABLE(2) ‘y offset

?TABLE(3) ‘window width

?TABLE(4) ‘window height

?TABLE(5) ‘background color

Related Instruction ZV_READIMAGE (read image)

98

5.3.1.3. ZV_LATCHRANS – Latch Image Transformation

Type Latch

Description

Perform scaling and translation of x, y coordinates on the

currently displayed image.

The process is to scale the sclaeFactor on the basis of the

current image. When zooming, the image coordinate position

corresponding to the center point of the screen remains

unchanged, and then translate the tx and ty pixels on the

zoomed image, when translating, the image boundary can be

translated to the center of the field of view at most. For

example, when panning to the lower right, the upper left corner

of the image can be translated to the center of the field of view

at most.

Note: due to the limitation of the display mode, the display

command cannot be called frequently and continuously,

otherwise the latter command may be lost, that is, the

command triggers the protection mechanism without updating

the display and returns directly.

Display commands include ZV_LATCH, ZV_LATCHTRANS and

ZV_LATCHCLEAR.

Grammar

ZV_LATCHTRANS(latchId, sclaeFactor, tx, ty)

latchId: latch channel number

sclaeFactor: the zoom ratio on the previous basis, if the

ratio can be 0, the display will be scaled according to the size

of the window

tx: the number of pixels to translate in the x direction. If it

is greater than 0, it moves in the positive direction of x. The size

count is based on the zoomed image

ty: the number of pixels to translate in the y direction. If it

is greater than 0, it moves in the positive direction of y. The size

count is based on the zoomed image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT img

99

ZV_LATCHSETSIZE(0,400,112) 'size of display area

ZV_READIMAGE(img,"logo.png",0) ‘read image in the format

of original image

ZV_LATCH(img,0)

'button actions

ZV_LATCHTRANS(0,0.8,10,10) ‘zoom out by 0.8 times on the

basis of the displayed image, and then translate in the positive

direction of the xy axis (bottom right) equivalent to a distance

of 10 pixels of the zoomed image

Original image:

After transformed:

(zoom out by a factor of 0.8, translate by 10 pixels in the x

direction, then translate by 10 pixels in the y direction)

100

5.3.1.4. ZV_LATCHCLEAR – Latch Data Clearing

Type Latch

Description

It is used to clear all other parameters except latch background

and image size, and uses the background to fill in latch area.

Note: due to the limitation of the display mode, the display

command cannot be called frequently and continuously,

otherwise the latter command may be lost, that is, the

command triggers the protection mechanism without updating

the display and returns directly.

Display commands include ZV_LATCH, ZV_LATCHTRANS and

ZV_LATCHCLEAR.

Grammar
ZV_LATCHCLEAR (latchId)

 latchId: latch channel number

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"logo.png",0) 'read the image

ZV_LATCH(img,0) ‘show the image in latch channel 0

ZV_LATCHCLEAR(0) ‘clear latch channel 0

5.3.1.5. ZV_LATCHSETSIZE – Set Latch Image Size

Type Latch

Description

It is used set the size of the latch display image, that is, the size

of the indicator. If the setting is wrong, the image will still be

displayed according to the size of the display control, but it will

cause the calculation error of the latch information, and then

the coordinate conversion the interactive control will be wrong.

And it is enabled when the latched image is changed next time,

that is, the display command needs to be called to trigger the

update.

Display commands include ZV_LATCH, ZV_LATCHTRANS and

ZV_LATCHCLEAR.

101

Grammar

ZV_LATCHSETSIZE(latchId,width,height)

latchId: latch channel No.

width: width of latch area

height: height of latch area

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_LATCHSETSIZE(0,400,200)

‘set width of height of channel 0: 400*200

ZV_READIMAGE(img,"1.bmp",0)

‘read image in original image format

ZV_LATCH(img,0) ‘show the image in latch 0

Related Instruction ZV_READIMAGE (read image)

5.3.1.6. ZV_LATCHSETBGC – Set Latch Background Color

Type Latch

Description

It is used set the background color of the latched image, which

will be enabled when the latched image is changed next time,

that is, the display command needs to be called to trigger the

update

Display commands include ZV_LATCH, ZV_LATCHTRANS and

ZV_LATCHCLEAR.

Grammar

ZV_LATCHSETBGC(latchId,rgb)

latchId: latch channel No.

rgb: background color, color value generated by ZV_COLOR

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM red

ZVOBJECT img

Red = ZV_COLOR(255,0,0)

ZV_READIMAGE(img,"logo.png",0) ‘read image information in

original image format

ZV_LATCHSETBGC(0,red)

102

‘change latch channel 0 background color as red

ZV_LATCH(img,0)

Original image:

Color changed:

Related Instruction ZV_COLOR (set color)

5.3.2. Coordinates Conversion of Image & HMI

5.3.2.1. ZV_POSTOIMG – From HMI Control to Image Coordinate

Type Coordinates conversion

Description

Convert HMI control coordinates to image pixel coordinates. In

the conversion process, it uses latch information, which needs

to be correct for coordinate transformation during interface

103

interaction.

The instruction is applied to the coordinate data, please note

that it is different from the length data

Grammar

ZV_POSTOIMG(latchId,num,tabIdIn,tabIdOut)

latchId: latch channel No.

num: coordinates numbers

tabIdIn: store the TABLE index of the coordinate points

before conversion, the data of num coordinate points are x, y, x,

y...

tabIdOut: store the TABLE index of the transformed

coordinate point

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

TABLE(0, 0, 1)

ZV_POSTOIMG(0,1,0,10)

'convert the control coordinates corresponding to latch channel

0 into image coordinates

5.3.2.2. ZV_POSFROMIMG – From Image to HMI Control

Coordinates

Type Coordinates conversion

Description

Convert image pixel coordinates to HMI control coordinate. In

the conversion process, it uses latch information, which needs

to be correct for coordinate transformation during interface

interaction.

104

The instruction is applied to the coordinate data, please note

that it is different from the length data

Grammar

ZV_POSFROMIMG(latchId,num,tabIdIn,tabIdOut)

latchId: latch channel No.

num: coordinates numbers

tabIdIn: store the TABLE index of the coordinate points

before conversion, the data of num coordinate points are x, y, x,

y...

tabIdOut: store the TABLE index of the transformed

coordinate point

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

TABLE(0, 0, 1)

ZV_POSFROMIMG(0,1,0,3)

'convert the image coordinates corresponding to latch channel

0 into HMI control coordinates.

5.3.2.3. ZV_LENTOIMG – From HMI Control to Image Length

Type Coordinates conversion

Description

Convert length of HMI control to image pixel length. In the

conversion process, it uses latch information, which needs to

be correct for relative value transformation during interface

interaction.

The instruction is applied to the length data, only for zooming,

please note that it is different from the coordinates data.

105

Grammar

imgLen = ZV_LENTOIMG(latchId,len)

latchId: latch channel number

len: the length in the coordinate system of the HMI control

return value:

imgLen: the length in the image coordinate system after

conversion

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

imgLen= ZV_LENTOIMG(0,20)

'convert the length in control coordinates corresponding to

latch channel 0 to the length in image coordinates

5.3.2.4. ZV_LENFROMIMG – From Image to HMI Control Length

Type Coordinates conversion

Description

Convert image pixel length to length of HMI control. In the

conversion process, it uses latch information, which needs to

be correct for relative value transformation during interface

interaction.

The instruction is applied to the length data, only for zooming,

please note that it is different from the coordinates data.

106

Grammar

imgLen = ZV_LENFROMIMG(latchId,len)

latchId: latch channel number

len: the length in the coordinate system of the image

return value:

hmiLen: the length in the HMI coordinate system

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

hmiLen =ZV_LENFROMIMG(0,10)

'convert the length in the image coordinate system to the length

in the control coordinates corresponding to latch channel 0

5.3.3. HMI

5.3.3.1. ZV_HMIADJRECT – Adjust Rectangle ROI

Type HMI

Description

It is used for HMI control interaction to adjust the rectangle

ROI, that is, the rectangular roi parallel to the horizontal axis. It

is used in the refresh function of the HMI custom control to

real-time adjust the position and size of the rectangular roi by

the mouse.

When the mouse is pressed, the adjustment function is

different according to the mouse position in the roi area. And

this area is the corresponding hit area with adjustment

function, the rectangle roi contains 9 hit areas (numbered 0-8,

corresponding to center, upper left point, upper right point,

lower right point, lower left point, left, upper, right, lower)

➢ The center hit area is used to adjust the position.

➢ The four corner hit areas are used to adjust the two

sides corresponding to each corner

➢ The four-side hit area is used to adjust the

corresponding side.

The schematic diagram of the numbering area hit by a regular

107

rectangle is as follows:

Grammar

hittype=ZV_HMIADJRECT (mousex, mousey, tabId, hitType,

maxHitDist =0)

mousex: the mouse x coordinate of the HMI control

mousey: the mouse y coordinate of the HMI control

tabId: save the TABLE index of the roi parameter of the

rectangle, which are ltx, lty, rbx, rby in sequence, that is, the

coordinates ltx, lty of the upper left corner of the rectangle, and

the coordinates of rbx, rby of the lower right corner of the

rectangle, corresponding to the values in the coordinate

system of the hmi control, and the adjusted value will directly

replace the unadjusted value

hitType: specify the No. of the hit area, indicating the

corresponding part of the rectangle to be adjusted by the

command. When it is -1, it means an invalid No., and the

command will judge the hit situation by itself. If it is a valid No.,

adjust the corresponding part of the rectangle. Normally, -1 is

passed in when the left mouse button is pressed, and the

command internally judges the hit position and returns. If the

return value is -1, there is no adjustment action, and the return

value is the effective area No., then in the subsequent mouse

movement process, it uses this return value as the new one

passed parameter and continues to call this command for

continuous adjustment.

maxHitDist: select the maximum distance of the "hit area",

it is only selected if it is less than this distance, and it is not

limited by the distance when it is 0

Return value:

108

hittype: when a valid hit No. is passed in, the No. is

returned. When an invalid hit number is passed in, calculate the

hit area No. according to the mouse clicking position and

return, -1 is returned if there is no hit area.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

hittype = ZV_HMIADJRECT(mousex,mousey,tabId,-1)

'get the hit area No. corresponding to the mouse click position

ZV_HMIADJRECT(mousex,mousey,tabId,hittype)

'specify the hit area No. and adjust the corresponding

rectangular part

5.3.3.2. ZV_HMIADJRECT2 – Adjust Rotate Rectangle ROI

Type HMI

Description

It is used for HMI control interaction to adjust the rotate

rectangle ROI. Specifically, it is used in the refresh function of

the HMI custom control to real-time adjust the position and

size of the rotate rectangular roi by the mouse.

When the mouse is pressed, the adjustment function is

different according to the mouse position in the roi area. And

this area is the corresponding hit area with adjustment

function, the rotate rectangle roi contains 10 hit areas

(numbered 0-9, corresponding to center, upper left point, upper

right point, lower right point, lower left point, left, upper, right,

lower, near right center, namely, the angle hit area).

➢ The center hit area is used to adjust the position.

➢ The four corner hit areas are used to adjust the two

sides corresponding to each corner.

➢ The four-side hit area is used to adjust the

corresponding side (current side and corresponding

side are adjusted).

➢ The angle hit area is used to adjust rotate angle.

109

Note: rotate rectangle angle based on image coordinates

system, clockwise is positive, the unit is degree.

The schematic diagram of the numbering area hit by a rotate

regular rectangle is as follows:

Grammar

hittype=ZV_HMIADJRECT2 (mousex, mousey, tabId, hitType,

maxHitDist =0)

mousex: the mouse x coordinate of the HMI control

mousey: the mouse y coordinate of the HMI control

tabId: save the TABLE index of the roi parameter of the

rotate rectangle, which are cx, cy, width, height, angle in

sequence, that is, the rotate rectangle’s center coordinates cx,

cy, width, height, angle, corresponding to the values in the

coordinate system of the hmi control, and the adjusted value

will directly replace the unadjusted value.

hitType: specify the No. of the hit area, indicating the

corresponding part of the rectangle to be adjusted by the

command. When it is -1, it means an invalid No., and the

command will judge the hit situation by itself. If it is a valid No.,

adjust the corresponding part of the rectangle. Normally, -1 is

passed in when the left mouse button is pressed, and the

command internally judges the hit position and returns. If the

return value is -1, there is no adjustment action, and the return

value is the effective area No., then in the subsequent mouse

movement process, it uses this return value as the new one

passed parameter and continues to call this command for

continuous adjustment.

maxHitDist: select the maximum distance of the "hit area",

it is only selected if it is less than this distance, and it is not

110

limited by the distance when it is 0

Return value:

hittype: when a valid hit No. is passed in, the No. is

returned. When an invalid hit number is passed in, calculate the

hit area No. according to the mouse clicking position and

return, -1 is returned if there is no hit area.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

hittype = ZV_HMIADJRECT2(mousex,mousey,tabId,-1)

'get the hit area No. corresponding to the mouse click position

ZV_HMIADJRECT2(mousex,mousey,tabId,hittype)

'specify the hit area No. and adjust the corresponding

rectangular part

5.3.3.3. ZV_HMIADJRECT2S – Adjust Rotate Rectangle ROI

(Single Side)

Type HMI

Description

It is used for HMI control interaction to adjust the rotate

rectangle ROI. Specifically, it is used in the refresh function of

the HMI custom control to real-time adjust the position and

size of the rotate rectangular roi by the mouse.

When the mouse is pressed, the adjustment function is

different according to the mouse position in the roi area. And

this area is the corresponding hit area with adjustment

function, the rotate rectangle roi contains 10 hit areas

(numbered 0-9, corresponding to center, upper left point, upper

right point, lower right point, lower left point, left, upper, right,

lower, near right center, namely, the angle hit area).

➢ The center hit area is used to adjust the position.

➢ The four corner hit areas are used to adjust the two

sides corresponding to each corner.

111

➢ The four-side hit area is used to adjust the

corresponding side.

➢ The angle hit area is used to adjust rotate angle.

The edge hit point only adjusts the hit edge, the opposite edge

is unchanged.

Note: rotate rectangle angle based on image coordinates

system, clockwise is positive, the unit is degree.

The schematic diagram of the numbering area hit by a rotate

regular rectangle is as follows:

Grammar

hittype=ZV_HMIADJRECT2S (mousex, mousey, tabId, hitType,

maxHitDist =0)

mousex: the mouse x coordinate of the HMI control

mousey: the mouse y coordinate of the HMI control

tabId: save the TABLE index of the roi parameter of the

rotate rectangle, which are cx, cy, width, height, angle in

sequence, that is, the rotate rectangle’s center coordinates cx,

cy, width, height, angle, corresponding to the values in the

coordinate system of the hmi control, and the adjusted value

will directly replace the unadjusted value.

hitType: specify the No. of the hit area, indicating the

corresponding part of the rectangle to be adjusted by the

command. When it is -1, it means an invalid No., and the

command will judge the hit situation by itself. If it is a valid No.,

adjust the corresponding part of the rectangle. Normally, -1 is

passed in when the left mouse button is pressed, and the

command internally judges the hit position and returns. If the

return value is -1, there is no adjustment action, and the return

112

value is the effective area No., then in the subsequent mouse

movement process, it uses this return value as the new one

passed parameter and continues to call this command for

continuous adjustment.

maxHitDist: select the maximum distance of the "hit area",

it is only selected if it is less than this distance, and it is not

limited by the distance when it is 0

Return value:

hittype: when a valid hit No. is passed in, the No. is

returned. When an invalid hit number is passed in, calculate the

hit area No. according to the mouse clicking position and

return, -1 is returned if there is no hit area.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

hittype = ZV_HMIADJRECT2S(mousex,mousey,tabId,-1)

'get the hit area No. corresponding to the mouse click position

ZV_HMIADJRECT2S(mousex,mousey,tabId,hittype)

'specify the hit area No. and adjust the corresponding

rectangular part

5.3.3.4. ZV_HMIADJARC – Adjust Arc ROI

Type HMI

Description

It is used for HMI control interaction to adjust the arc ROI.

Specifically, it is used in the refresh function of the HMI custom

control to real-time adjust the position and size of the arc ROI

by the mouse.

When the mouse is pressed, the adjustment function is

different according to the mouse position in the ROI area. And

this area is the corresponding hit area with adjustment

function, the arc ROI contains 5 hit areas (numbered 0-4,

corresponding to center, inner circle, outer circle, starting side,

end side).

113

➢ The center hit area is used to adjust the position.

➢ The inner circle hit area is used to adjust the size of

the inner circle.

➢ The outer circle hit area is used to adjust the size of

the outer circle.

➢ The starting side hit area is used to adjust starting

angle of the circle.

➢ The end side hit area is used to adjust end angle of

the circle.

Note: arc starting angle is based on image coordinates system,

clockwise is positive, the unit is degree.

The schematic diagram of the numbering area hit by an arc is

as follows:

Grammar

hittype = ZV_HMIADJARC (mousex, mousey, tabId, hitType,

maxHitDist = 0)

mousex: the mouse x coordinate of the HMI control

mousey: the mouse y coordinate of the HMI control

tabId: save the TABLE index of the ROI parameter of the

arc, which are cx, cy, radius, annR, angleStart, anglExtent in

sequence, that is, the arc’s center coordinates cx, cy, circle

center arc, circle semi-width, starting angle, angle range, and

the adjusted value will directly replace the unadjusted value.

hitType: specify the No. of the hit area, indicating the

corresponding part of the arc to be adjusted by the command.

When it is -1, it means an invalid No., and the command will

114

judge the hit situation by itself. If it is a valid No., adjust the

corresponding part of the arc. Normally, -1 is passed in when

the left mouse button is pressed, and the command internally

judges the hit position and returns. If the return value is -1,

there is no adjustment action, and the return value is the

effective area No., then in the subsequent mouse movement

process, it uses this return value as the new one passed

parameter and continues to call this command for continuous

adjustment.

maxHitDist: select the maximum distance of the "hit area",

it is only selected if it is less than this distance, and it is not

limited by the distance when it is 0

Return value:

hittype: when a valid hit No. is passed in, the No. is

returned. When an invalid hit number is passed in, calculate the

hit area No. according to the mouse clicking position and

return, -1 is returned if there is no hit area.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

hittype = ZV_HMIADJARC(mousex,mousey,tabId,-1)

'get the hit area No. corresponding to the mouse click position

ZV_HMIADJARC(mousex,mousey,tabId,hittype)

'specify the hit area No. and adjust the corresponding arc part.

5.3.3.5. ZV_HMIRECT2 – From Rotate Rectangle ROI to HMI

Drawing Primitives

Type HMI

Description

It is used to decompose the rotating rectangle ROI into HMI-

supported drawing primitives and add control parameters for

HMI drawing display.

Grammar ZV_HMIRECT2(tabIdRect,tabIdOut[,maxElems=0])

115

tabIdRect: the TABLE index that saves the parameters of

the rotated rectangle, which are cx, cy, width, height, angle,

subNum and subWidth in sequence, that is, the center

coordinates of the rotated rectangle cx, cy, width, height, angle,

number of sub-regions, and width of the sub-region, and these

values are the values in the coordinate system of the hmi

control, and the number of sub-regions can be 0 (default value

of maxElems), if more than 80, the excess part will not be drawn.

Usually, when drawing a general rotation rectangle, such as the

ROI rectangle for creating a template and the ROI rectangle for

generating a Region used in Blob analysis, subNum = 0 and

subWidth = 0 are fine. When drawing the roi rectangle for

measuring a straight line, sub_num and subWidth are the

parameter values corresponding to the straight line

measurement, please refer to the ZV_MRGENLINE command for

parameter details.

tabIdOut: the TABLE index of the primitive parameter, which

are the corner coordinates of the four vertices of the rotating

rectangle ROI, the start and end points of the arrow pointing

from the center of the roi to the center of the right line, the

coordinates of the line segments on both sides of the arrow, the

number of sub-region segment lines, and the starting and

ending coordinates of the segment line. And there is maximum

and minimum output quantity limit, maximum 80 sub-areas, the

excess part will not be output, the minimum needs to ensure the

output of the parameters of the rotation rectangle and the

indicator arrow, if there is no maxElems parameter, it is

necessary to ensure enough space to receive the primitive

parameter 8*(subNum- 1)+17 (subNum is greater than 1)

maxElems: the available size of tabIdOut, the space

occupied by the output parameters is ≤ to maxElems, and the

output primitives are complete, the excess parts are not output

tableOut output coordinates:

116

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

'construct a rotated rectangle centered at (100,100) with a width

and height of 60 * 40 and an angle of 60 degrees. The number of

sub-regions is 8, and the width of the sub-region is 5, and the

graphic data is stored in the TABLE whose starting index is 0

TABLE(0,100,100,60,40,60,8,5)

'set the color of the drawn rectangle to blue

SET_COLOR(RGB(0,0,255))

'decompose the rotated rectangle into drawing primitives

supported by hmi, and store the corresponding primitive

coordinate data in the TABLE whose starting index is 300

ZV_HMIRECT2(0, 300)

'draw a rectangle

DRAWLINE(TABLE(300), TABLE(301), TABLE(302), TABLE(303))

DRAWLINE(TABLE(302), TABLE(303), TABLE(304), TABLE(305))

DRAWLINE(TABLE(304), TABLE(305), TABLE(306), TABLE(307))

DRAWLINE(TABLE(306), TABLE(307), TABLE(300), TABLE(301))

'draw an arrow from the center of the rectangle to the center of

the right line

DRAWLINE(TABLE(308), TABLE(309), TABLE(310), TABLE(311))

DRAWLINE(TABLE(312), TABLE(313), TABLE(310), TABLE(311))

DRAWLINE(TABLE(314), TABLE(315), TABLE(310), TABLE(311))

117

'set the color of the drawn subregion line to green

SET_COLOR(RGB(0,255,0))

'If the number of sub-region dividing lines is greater than 0, draw

sub-region segment lines

IF TABLE(316) > 0 THEN

DIM idx

FOR idx = 0 TO TABLE(316)-1

DRAWLINE (TABLE(317+idx*4), TABLE(318+idx*4),

TABLE(319+idx*4), TABLE(320+idx*4))

NEXT

ENDIF

5.3.3.6. ZV_HMIARC – From Arc ROI to HMI Drawing Primitives

Type HMI

Description
It is used to decompose the arc ROI into HMI-supported drawing

primitives and add control parameters for HMI drawing display.

Grammar

ZV_HMIARC(tabIdArc,tabIdOut[,maxElems=0])

tabIdArc: the TABLE index that saves the parameters of the

arc, which are cx, cy, radius, annR, angleStart, angleExtent,

subNum and subWidth in sequence, that is, the center

coordinates of the arc cx, cy, arc center radius, arc semi-width,

starting angle, angle range, sub-region numbers, sub-region

width, and these values are the values in the coordinate system

of the hmi control, and the number of sub-regions can be 0, if

more than 80, the excess part will not be drawn. Usually, when

drawing a general arc, such as the ROI arc for generating a

Region used in Blob analysis, subNum = 0 and subWidth = 0 are

fine. When drawing the ROI arc for measuring a center, sub_num

and subWidth are the parameter values corresponding to the arc

measurement, please refer to the ZV_MRGENCIRCLE command

for parameter details.

tabIdOut: the TABLE index of the primitive parameters,

118

which are the center of the arc, the inner and outer arc, the start

and end angles, the number of arc edges, the start and end

coordinates of the edges, the number of sub-region segment

lines, and the start and end coordinates of the segment lines.

Among them, the ring edge refers to the boundary line

corresponding to the starting and ending angle of the ring.

➢ If it is a full circle, there will be 1 line.

➢ If it is a non-full circle, there will be two lines.

➢ If it is not needed, it will be 0 lines.

➢ When the edge line is 0, the dividing line must also be

0.

➢ The angle unit after conversion is radian, and there are

maximum and minimum output quantity limits

internally. The maximum number of sub-areas is 80,

and the excess part is not output. The minimum

parameter output of the ring and edge line needs to be

guaranteed. If there is no maxElems parameter, it

needs to ensure enough space to receive primitive

parameters 8*(subNum-1)+20 (subNum is > 1)

maxElems: the available size of tabIdOut, the space

occupied by the output parameters is ≤ to maxElems, and the

output primitives are complete, the excess parts are not output

tableOut output coordinates:

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
'construct an arc with a center at (100,100, a radius of 60, a half-

width of 20, a starting angle of 0, and an angle range of 270, with

119

8 sub-regions and a sub-region width of 5, and store the graphic

data in a TABLE starting at index 0

TABLE(0,100,100,60,20,0,270,8,5)

'set the color of the drawn arc to blue

SET_COLOR(RGB(0,0,255))

'decompose the arc into the drawing primitives supported by

hmi, and store the corresponding primitive coordinate data in

the TABLE whose starting index is 300

ZV_HMIARC(0,300)

'draw the inner arc

DRAWARC(TABLE(300), TABLE(301), TABLE(302), TABLE(304),

TABLE(305))

'draw the outer arc

DRAWARC(TABLE(300), TABLE(301), TABLE(303), TABLE(304),

TABLE(305))

'draw a cross at the center of the circle

DRAWLINE(TABLE(300),TABLE(301)-

5,TABLE(300),TABLE(301)+5) DRAWLINE(TABLE(300)-

5,TABLE(301),TABLE(300)+5,TABLE(301))

'If the number of edges is greater than 0, draw the edges

IF TABLE(306) > 0 THEN

DIM idx

FOR idx = 0 to TABLE(306)-1

DRAWLINE(TABLE(307+idx*4), TABLE(308+idx*4),

TABLE(309+idx*4), TABLE(310+idx*4))

NEXT

'set the color of the drawn sub-region line to green

SET_COLOR(RGB(0,255,0))

120

DIM startid 'sub-area dividing line

startid = 307+TABLE(306)*4

FOR idx = 0 TO TABLE(startid)-1

DRAWLINE(TABLE(startid+1+idx*4),

TABLE(startid+2+idx*4),

TABLE(startid+3+idx*4), TABLE(startid+4+idx*4))

NEXT

ENDIF

5.3.4. Custom Control Drawing

5.3.4.1. DRAWZVOBJ – HMI Custom Control Drawing

Type HMI

Description

It is used to draw one image in the area specified by HMI custom

control. Specifically, it is used in custom control drawing

function.

Grammar

DRAWZVOBJ (img, x1, y1, x2, y2)

img: input image

x1: the x coordinate of the upper left corner of the specified

area

y1: the y coordinate of the upper left corner of the specified

area

x2: the x coordinate of the lower right corner of the specified

area, which can be omitted, and the default value is the X

coordinate of the lower right corner of the control, that is, the

121

width of the control -1

y2: the y coordinate of the lower right corner of the specified

area, which can be omitted, and the default value is the Y

coordinate of the lower right corner of the control, that is, the

height of the control -1

The instruction zooms and matches the image to the area

specified by x1, y1, x2, y2. The values of x1, y1, x2, and y2 can be

beyond the range of the control. The instruction adapts the

image according to the original value, and don’t draw the exceed

part of control after matching.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_READIMAGE(img,"logo.png",0)

'read image in original image format

DRAWZVOBJ(img,0,0,639,479)

'draw an image img in the area specified by the upper left

coordinates (0,0) and lower right coordinates (639,479) of

the custom control, and the width and height directions of

the image will be scaled and matched

The lower right corner of the image can be drawn on the control

as follows:

GLOBAL SUB cust_draw()

local width, height

width = HMI_CONTROLSIZEX()

height = HMI_CONTROLSIZEY()

'the left and upper sides of the image are beyond the

scope of the control and will not be drawn

'the last two parameters can be omitted, and the

default value is the correct coordinate

DRAWZVOBJ(MAIN_IMG, -width, -height, width-1,

height-1)

END SUB

122

5.4. Basic Parameters

5.4.1. ZV_IMAGEFOR – Basic Information

Type Basic parameters

Description It is used to get image basic information.

Grammar

ZV_IMGINFO(img, tabId)

img: ZVOBJECT type, source image

tabId: TABLE index, the TABLE index that outputs position,

image information, 5 pieces of data, which are width, height,

channel number, data type and basic pixel size in turn. For the

image data type, please refer to the ZV_IMGGENCONST

command

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"1.bmp",0) 'get the image in original format

ZV_IMGINFO(img,0)

size = TABLE(0) * TABLE (1) * TABLE (2) * TABLE (4)

PRINT "Image Data Size:" + tostr(size)

Related Instruction ZV_READIMAGE (read image)

5.4.2. ZV_IMGISVALID – Whether the Image is Valid

Type Basic parameters

Description

It is used to determine whether the image is valid.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

➢ Divided into command syntax and function syntax

➢ Non-immediate instructions, for function syntax, some

expressions are not supported now, and an error that non-

immediate instructions are not supported will be printed at

this time.

123

Grammar

Command syntax: ZV_IMGISVALID(img, tabId)

img: ZVOBJECT type, source image

tabId: TABLE index, whether the image is valid. 1 – valid, 0-

invalid

Function syntax: val = ZV_IMGISVALID (img)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"1.bmp",0) ‘read the image in original

image format

IF ZV_IMGISVALID(img) = 0 THEN

PRINT "Image Is Empty"

ENDIF

Related Instruction ZV_READIMAGE (read image)

5.4.3. ZV_IMGWIDTH – Get Image Width

Type Basic parameters

Description

It is used to get image width.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

➢ Divided into command syntax and function syntax

➢ Non-immediate instructions, for function syntax, some

expressions are not supported now, and an error that non-

immediate instructions are not supported will be printed at

this time.

Grammar

Command syntax: ZV_IMGWIDTH(img, tabId)

img: ZVOBJECT type, source image

tabId: TABLE index, output results are saved into TABLE

(tabId).

Function syntax: val = ZV_IMGWIDTH (img)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT img

124

ZV_READIMAGE(img,"1.bmp",0) ' read the image in original

image format

ZV_IMGWIDTH(mat,0) ‘get image width, the result is saved into

TABLE (0).

5.4.4. ZV_IMGHEIGHT – Get Image Height

Type Basic parameters

Description

It is used to get image height.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

➢ Divided into command syntax and function syntax

➢ Non-immediate instructions, for function syntax, some

expressions are not supported now, and an error that non-

immediate instructions are not supported will be printed at

this time.

Grammar

Command syntax: ZV_IMGHEIGHT(img, tabId)

img: ZVOBJECT type, source image

tabId: TABLE index, output results are saved into TABLE

(tabId).

Function syntax: val = ZV_IMGHEIGHT (img)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"1.bmp",0) ' read the image in original

image format

ZV_IMGHEIGHT(mat,0) ‘get image height, the result is saved

into TABLE (0).

5.4.5. ZV_IMGCNS – Get Image Channels

Type Basic parameters

Description It is used to get the number of image channels.

125

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

➢ Divided into command syntax and function syntax

➢ Non-immediate instructions, for function syntax, some

expressions are not supported now, and an error that non-

immediate instructions are not supported will be printed at

this time.

Grammar

Command syntax: ZV_IMGCNS(img, tabId)

img: ZVOBJECT type, source image

tabId: TABLE index, output results are saved into TABLE

(tabId).

Function syntax: val = ZV_IMGCNS (img)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"1.bmp",0) ' read the image in original

image format

ZV_IMGCNS(mat,0) ‘get image channel numbers, the result is

saved into TABLE (0).

5.5. Access

5.5.1. ZV_IMGGETVAL – Get the Value

Type Access

126

Description

It is used to get the value of image specified value.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_IMGGETVAL(img,x,y,cn,tabId)

Or value = ZV_IMGGETVAL(img,x,y,cn)

im: ZVOBJECT type, source image

x: get the x-coordinate of the value

y: get the y coordinate of the value

cn: the specified channel No.

tabId: TABLE index, output parameter, obtained value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"1.bmp",0) ' read the image in original

image format

ZV_IMGGETVAL(img,x,y,0,0) ‘get the value of image

coordinates (x, y)

Related Instruction ZV_IMASETVAL (modify value)

5.5.2. ZV_IMGSETVAL – Modify the Value

Type Access

Description It is used to modify the value of image specified value.

127

Grammar

ZV_IMGSETVAL(img,x,y,cn,value)

im: ZVOBJECT type, source image

x: modify the x-coordinate of the value

y: modify the y coordinate of the value

cn: modify the specified channel No. of the value

value: the value after modification

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"1.bmp",0) ' read the image in original

image format

ZV_IMGGETVAL(img,0,0,0,100) ‘modify channel 0 of image

“img”, the value of coordinate (0,0) is 100

Related Instruction ZV_IMAGETVAL (get value)

5.5.3. ZV_IMGGETELEM – Get Pixel Value

Type Access

Description
It is used to get the pixel value of specified position, multi-

channel is valid, and the tab_elememt length is 4.

128

Grammar

ZV_IMGGETELEM(img,x,y,tabId)

im: ZVOBJECT type, source image

x: obtained pixel coordinate x

y: obtained pixel coordinate y

tabId: TABLE index, output parameter, obtained pixel value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT show_img

ZV_READIMAGE(img,"1.bmp",0) ' read the image in original

image format

ZV_IMGGETELEM(show_ima,100, 100, 0) ‘get the pixel value of

coordinates (100, 100) of image “show_img”, and save them into

TABLE (0)

Related Instruction ZV_IMGSETELEM (modify pixel value)

5.5.4. ZV_IMGSETELEM – Modify the Pixel Value

Type Access

Description
It is used to modify the pixel value of specified value, multi-

channel is valid, and the tab_elememt length is 4.

129

Grammar

ZV_IMGSETELEM(img,x,y,tabId)

im: ZVOBJECT type, image to be modified

x: modified pixel coordinate x

y: modified pixel coordinate y

tabId: TABLE index, each channel value after modification

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT show_img

ZV_READIMAGE(img,"1.bmp",0) ' read the image in original

image format

ZV_IMGGETELEM(show_img,100,100,0) ‘modify pixel value of

image “show_img” coordinate (100,100) as each channel value

of TABLE(0).

Related Instruction ZV_IMGGETELEM (get pixel value)

5.5.5. ZV_IMGGETSUB – Get Sub-Region

Type Access

Description

It is used to get the image sub-region, and it is recommended

for the size of the subregion is the times of 4.

130

Grammar

ZV_IMGGETSUB(img,subImg,x,y,w,h)

im: ZVOBJECT type, source image

subImg: ZVOBJECT type, obtained subregion image

x: obtained pixel coordinate x of subregion in source image

y: obtained pixel coordinate y of subregion in source image

w: obtained subregion width

h: obtained subregion height

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"1.bmp",0) 'read the image in original image

format

ZV_IMGGETSUB(src, dst, 0, 0, 100, 100) ‘get the image with

width pixel 100 and height pixel 100 based on original image

coordinates 0,0

Related Instruction ZV_IMGSETSUB (modify subregion)

5.5.6. ZV_IMGSETSUB – Modify the Sub-Region

Type Access

Description

It is used to modify the image sub-region, and it is

recommended for the size of the subregion is the times of 4.

Grammar

ZV_IMGSETSUB(img, subImg, x, y)

img: ZVOBJECT type, the big image to be modified

subImg: ZVOBJECT type, the result image to be modified for

subregion

x: coordinate x of subregion to be modified

y: coordinate y of subregion to be modified

131

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst

ZV_READIMAGE(src, “1.bmp”, 0) ' read the image in original

image format

ZV_IMGGETSUB(img, dst, x, y) ‘modify the size of image

subregion.

Related Instruction ZV_IMGGETSUB (get subregion)

5.5.7. ZV_IMGSETCONST – Fill Constant Image

Type Access

Description

Fill in the image by constant “val”.

Grammar

ZV_IMGSETCONST(img, val)

img: ZVOBJECT type, the image to be filled

val: the value is 0-255

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, “1.bmp”, 0) ' read the image in original

image format

ZV_IMGGETSUB(img,255) ‘use constant 255 to fill in “img”

5.5.8. ZV_IMGCONVERT – Convert Specified Data Type

Type Access

Description It is used to convert image data types.

132

Grammar

ZV_IMGCONVERT(src, dst, type [,mult = 1, add = 0])

src: ZVOBJECT type, source image

dst: ZVOBJECT type, converted image

type: image data type after converted

type Description

0 8-bit without symbol 8U

1 16-bit without symbol 16U

2 32-bit with symbol 32S

3 64-bit with symbol 64F

mult: value multiplier when converting

add: value offset when converting

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src, “1.bmp”, 0) ' read the image in original

image format

ZV_IMGCONVERT (src, dst, 3, 1, 0) ‘convert the image to 64F

form

5.5.9. ZV_IMGCOPY – Copy

Type Access

Description It is used to copy images.

Grammar

ZV_IMGCOPY(src, dst)

src: ZVOBJECT type, source image

dst: ZVOBJECT type, copied image, if src and dst are the

same one variable, instruction will return normally and directly.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src, “test, jpg”, 0) ' read the image in original

image format

ZV_IMGCOPY (src, dst) ‘copy image in src variable into dst

variable

133

5.5.10. ZV_IMGSPLIT2 – Split Dual-Channel

Type Access

Description
It is used to split the dual-channel image into two independent

channels.

Grammar

ZV_IMGSPLIT2(src, dst1, dst2)

src: ZVOBJECT type, dual-channel image

dst1: ZVOBJECT type, the first channel after decomposition

dst2: ZVOBJECT type, the second channel after

decomposition

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst1, dst2

ZV_READIMAGE(src, “test, jpg”, 0) ' read the image in original

image format

ZV_IMGSPLIT2 (src, dst1, dst2) ‘split dual-channel image “src”

into dst1 and dst2

Related Instruction ZV_IMGMERGE2

5.5.11. ZV_IMGSPLIT3 – Split Three-Channel

Type Access

Description
It is used to split the three-channel image into three independent

channels.

Grammar

ZV_IMGSPLIT3(src, dst1, dst2, dst3)

src: ZVOBJECT type, source three-channel image

dst1: ZVOBJECT type, the first channel after decomposition

dst2: ZVOBJECT type, the second channel after

decomposition

dst3: ZVOBJECT type, the third channel after

decomposition

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

134

Example

ZVOBJECT src, r, g, b

ZV_READIMAGE(src, “test, jpg”, 0) ' read the image in original

image format

ZV_IMGSPLIT3 (src_img, r, g, b) ‘split original three-channel

image into r, g, b three independent channels.

Related Instruction ZV_IMGERGE3

5.5.12. ZV_IMGSPLIT4 – Split Four-Channel

Type Access

Description
It is used to split the four-channel image into four independent

channels.

Grammar

ZV_IMGSPLIT4(src, dst1, dst2, dst3, dst4)

src: ZVOBJECT type, source four-channel image

dst1: ZVOBJECT type, the first channel after decomposition

dst2: ZVOBJECT type, the second channel after

decomposition

dst3: ZVOBJECT type, the third channel after

decomposition

dst4: ZVOBJECT type, the fourth channel after

decomposition

Controller It is valid in controllers that support ZV function or they belong

135

to 5XX series or above.

Example

ZVOBJECT src, dst1, dst2, dst3, dst4

ZV_READIMAGE(src, “test, jpg”, 0) ' read the image in original

image format

ZV_IMGSPLIT4 (src, dst1, dst2, dst3, dst4) ‘split four-channel

image into 4 independent channels.

Related Instruction ZV_IMGERGE4

5.5.13. ZV_IMGMERGE2 – Merge Dual-Channel

Type Access

Description
It is used to merge two single-channel images into a dual-

channel image.

Grammar

ZV_IMGMERGE2(src1, src2, dst)

src1: ZVOBJECT type, the first single-channel image

src2: ZVOBJECT type, the second single-channel image

dst: ZVOBJECT type, image after merged

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1, “test1, jpg”, 0) ' read the image in original

image format

ZV_READIMAGE(src2, “test2, jpg”, 0) ' read the image in original

image format

ZV_IMGMERGE2 (src1, src2, dst) ‘merge into one dual-channel

Related Instruction ZV_IMGSPLIT2

5.5.14. ZV_IMGMERGE3 – Merge Three-Channel

Type Access

Description
It is used to merge three single-channel images into a 3-channel

image.

136

Grammar

ZV_IMGMERGE2(src1, src2, src3, dst)

src1: ZVOBJECT type, the first single-channel image

src2: ZVOBJECT type, the second single-channel image

src3: ZVOBJECT type, the third single-channel image

dst: ZVOBJECT type, image after merged

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, src3, dst

ZV_READIMAGE(src1, “test1, jpg”, 0) 'read the image in original

image format

ZV_READIMAGE(src2, “test2, jpg”, 0) 'read the image in original

image format

ZV_READIMAGE(src3, “test3, jpg”, 0) 'read the image in original

image format

ZV_IMGMERGE3 (src1, src2, src3, dst) ‘merge into one 3-

channel

Related Instruction ZV_IMGSPLIT3

5.5.15. ZV_IMGMERGE4 – Merge Four-Channel

Type Access

Description
It is used to merge two single-channel images into a dual-

channel image.

137

Grammar

ZV_IMGMERGE2(src1, src2, src3, src4, dst)

src1: ZVOBJECT type, the first single-channel image

src2: ZVOBJECT type, the second single-channel image

src3: ZVOBJECT type, the third single-channel image

src4: ZVOBJECT type, the fourth single-channel image

dst: ZVOBJECT type, image after merged

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, src3, src4, dst

ZV_READIMAGE(src1, “test1, jpg”, 0) ' read the image in original

image format

ZV_READIMAGE(src2, “test2, jpg”, 0) ' read the image in original

image format

ZV_READIMAGE(src3, “test3, jpg”, 0) ' read the image in original

image format

ZV_READIMAGE(src4, “test4, jpg”, 0) ' read the image in original

image format

ZV_IMGMERGE4 (src1, src2, src3, src4, dst) ‘merge into one 4-

channel

Related Instruction ZV_IMGSPLIT4

5.5.16. ZV_IMGGETCN – Get Image in Specified Channel

Type Access

Description It is used to get the image that is in specified channel.

Grammar

ZV_IMGGETCN(src, dst, cn)

src: ZVOBJECT type, input image

dst: ZVOBJECT type, obtained channel image

cn: channel No., ≥0, and it is smaller than channels of src

itself

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

138

Example

ZVOBJECT src, R

ZV_READIMAGE(src1, “test, jpg”, 0) ' read the image in original

image format

ZV_IMGGETCN(src, R, 0) ‘get image of channel 0

5.6. Operation

5.6.1. Algebra

5.6.1.1. ZV_SCALE -- Grayscale Extension

Type Algebra

Description

It is used to remap grayscale of matrix or image, dst = src * mult

+ add. For images, when the pixel value of the target image dst

is greater than 255, it takes 255, and when the pixel value is less

than 0, it takes 0

Grammar

ZV_SCALE(src, dst, mult, add)

src: ZVOBJECT type, source image or matrix

dst: ZVOBJECT type, modified image or matrix, the same

type of src

mult: transformation scale factor, floating point value

add: the offset of the transformation, adjust the grayscale

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)'read the image in the original

image format

ZV_MINMAXLOC(src,0) 'output to TABLE(0) image src minimum

139

value, minimum value x, y coordinates, maximum value,

maximum value x, y coordinates

mult=255/(TABLE(3)-TABLE(0))

add=-mult*TABLE(0)

ZV_SCALE(src,dst,mult,add) 'remap grayscale to [0,255]

5.6.1.2. ZV_ABSDIFF -- Absolute Difference

Type Algebra

Description Absolute difference value of 2 images or matrixes.

Grammar

ZV_ABSDIFF(src1, src2, dst, mult)

src1: ZVOBJECT type, image or matrix 1

src2: ZVOBJECT type, image or matrix 2 (size, channels and

data type must be same as src 1)

dst: ZVOBJECT type, calculated image or matrix, the same

type of src1

mult: multiplier when calculating

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1,"test1.jpg",0) ‘read the image in the

original image format

ZV_READIMAGE(src2,"test2.jpg",0) ‘read the image in the

original image format

ZV_ABSDIFF (src1, src2, dst, 0.5) 'output calculated image into

dst, calculation formula is dst = | src1 – src2 | * mult

5.6.1.3. ZV_ADDWEIGHTED -- Weighted Sum

Type Algebra

Description
It is used to find the weighted sum of images or matrices

element by element, dst = weight1*src1 + weight2*src2 + add

Grammar ZV_ADDWEIGHTED(src1,src2,dst,weight1,weight2,add)

140

src1: ZVOBJECT type, image or matrix 1

src2: ZVOBJECT type, image or matrix 2 (size, channels and

data type must be same as src 1)

dst: ZVOBJECT type, calculated image or matrix, the same

type of src1

weight1: the weight of 1

weight2: the weight of 2

add: bias term

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1,"test1.jpg",0) ‘read the image in the

original image format

ZV_READIMAGE(src2,"test2.jpg",0) ‘read the image in the

original image format

ZV_ADDWEIGHT (src1, src2, dst, 0.8, 1-0.8, 0) 'image merging

5.6.1.4. ZV_MUL -- Multiple

Type Algebra

Description
It is used to multiple two images or matrices element by

element, dst = src1*src2*mult+add

Grammar

ZV_MUL (src1,src2,dst,mult,add)

src1: ZVOBJECT type, image or matrix 1

src2: ZVOBJECT type, image or matrix 2 (size, channels and

data type must be same as src 1)

dst: ZVOBJECT type, calculated image or matrix, the same

type of src1

mult: multiple when calculating

add: bias when calculating

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

141

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1,"test1.jpg",0) ‘read the image in the

original image format

ZV_READIMAGE(src2,"test2.jpg",0) ‘read the image in the

original image format

ZV_MUL (src1, src2, dst, 0.5, 2) 'dst = src1*src2*mult+add, two

images or matrices are multiplied element by element

5.6.1.5. ZV_DIV -- Divide

Type Algebra

Description
It is used to divide two images or matrices element by element,

dst = src1*src2*mult+add

Grammar

ZV_DIV (src1,src2,dst,mult,add)

src1: ZVOBJECT type, image or matrix 1

src2: ZVOBJECT type, image or matrix 2 (size, channels and

data type must be same as src 1)

dst: ZVOBJECT type, calculated image or matrix, the same

type of src1

mult: multiple when calculating

add: bias when calculating

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1,"test1.jpg",0) ‘read the image in the

original image format

ZV_READIMAGE(src2,"test2.jpg",0) ‘read the image in the

original image format

ZV_DIV (src1, src2, dst, 0.5, 2) 'dst = src1/src2*mult+ add

5.6.1.6. ZV_MAX – Maximum Value

Type Algebra

142

Description
It is used to get the maximum of two images or matrices

element by element.

Grammar

ZV_MAX (src1,src2,dst)

src1: ZVOBJECT type, image or matrix 1

src2: ZVOBJECT type, image or matrix 2 (size, channels and

data type must be same as src 1)

dst: ZVOBJECT type, resulting image or matrix, it is

composed of the larger value in src1 and src2, and the type, size,

channels are same as src1.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1,"test1.jpg",0) ‘read the image in the

original image format

ZV_READIMAGE(src2,"test2.jpg",0) ‘read the image in the

original image format

ZV_DIV (src1, src2, dst) ‘get the bigger one between 2 images to

make the dst image

5.6.1.7. ZV_MIN – Minimal Value

Type Algebra

Description
It is used to get the minimal of two images or matrices element

by element.

Grammar

ZV_MIN (src1,src2,dst)

src1: ZVOBJECT type, image or matrix 1

src2: ZVOBJECT type, image or matrix 2 (size, channels and

data type must be same as src 1)

dst: ZVOBJECT type, resulting image or matrix, it is

composed of the smaller value in src1 and src2, and the type,

size, channels are same as src1.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

143

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1,"test1.jpg",0) ‘read the image in the

original image format

ZV_READIMAGE(src2,"test2.jpg",0) ‘read the image in the

original image format

ZV_MIN (src1, src2, dst) ‘get the smaller one between 2 images

to make the dst image

5.6.1.8. ZV_COMPARE – Comparison

Type Algebra

Description

It is used to compare the size of src1 and src2, and output a

binary image. If the logical condition is met, it is a white pixel,

otherwise it is a black pixel

Grammar

ZV_COMPARE (src1,src2,dst,op)

src1: ZVOBJECT type, image or matrix 1

src2: ZVOBJECT type, image or matrix 2 (size, channels and

data type must be same as src 1)

dst: ZVOBJECT type, result of comparison, 8U image type

op: operator of comparison

Value of comparison operator Description

0 =

1 >

2 ≥

3 <

4 ≤

5 ≠

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src1, src2, dst

ZV_READIMAGE(src1,"test1.jpg",0) ‘read the image in the

original image format

ZV_READIMAGE(src2,"test2.jpg",0) ‘read the image in the

144

original image format

ZV_COMPARE (src1, src2, dst, 1) ‘compare two images values

and output one binary image

5.6.1.9. ZV_NORM – Norm

Type Algebra

Description

It is used to calculate the norm of type.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_NORM (src, type, tab_norm) / number = ZV_NORM (src, type)

src: ZVOBJECT type, image or matrix

type: type of norm

Type of norm Description

0 Infinity norm — maximum absolute value

1 1-norm - sum of absolute values

2 2-norm – the root of the sum of squares

If the input type is out of range, return 0 directly

tab_norm: TABLE index, norm of matrix or image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src dst

ZV_READIMAGE(src,"test.jpg",0) ‘read the image in the original

image format

ZV_COMPARE (src, 1, 0) ‘output norm of matrix to TABLE (0)

5.6.2. Image Logic Operation

5.6.2.1. ZV_AND – Bitwise And

Type Image logic operation

Description It is used to calculate “and” image of image src1 and image src2.

145

Grammar

ZV_AND (src1, src2, dst)

src1: ZVOBJECT type, single-channel image

src2: ZVOBJECT type, single-channel image, the size,

channel numbers, data type must be same as src1

dst: ZVOBJECT type, result image of bitwise AND per

element of src1 and src2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT bin1, bin2, dst

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1)'store data into TABLE(0)

ZV_IMGGENCONST(bin1,3,3,1,0,0)

TABLE(20, 1, 0, 0, 1, 0, 1, 1, 1, 1)'store data into TABLE(0)

ZV_IMGGENCONST(bin2,3,3,1,0,20)

ZV_AND(bin1,bin2,dst)

'find the common part of two binary images

5.6.2.2. ZV_OR – Bitwise Or

Type Image logic operation

Description It is used to calculate “or” image of image src1 and image src2.

146

Grammar

ZV_OR (src1, src2, dst)

src1: ZVOBJECT type, single-channel image

src2: ZVOBJECT type, single-channel image, the size,

channel numbers, data type must be same as src1

dst: ZVOBJECT type, result image of bitwise OR per element

of src1 and src2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT bin1, bin2, dst

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1)'store data into TABLE(0)

ZV_IMGGENCONST(bin1,3,3,1,0,0)

TABLE(20, 1, 0, 0, 1, 0, 1, 1, 1, 1)'store data into TABLE(0)

ZV_IMGGENCONST(bin2,3,3,1,0,20)

ZV_OR(bin1,bin2,dst)

'the dst image is the result image obtained by bitwise OR each

element of the src1 and src2 images

5.6.2.3. ZV_NOT – Bitwise Not

Type Image logic operation

Description It is used to calculate the bitwise inverse of image src.

147

Grammar

ZV_NOT (src, dst)

src1: ZVOBJECT type, single-channel image

dst: ZVOBJECT type, the result image after bitwise inversion

of each element of src

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT bin dst

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1)'store data into TABLE(0)

ZV_IMGGENCONST(bin,3,3,1,0,0)

ZV_NOT (bin, dst) ‘image bitwise inversion

5.6.2.4. ZV_XOR – Bitwise Exclusive OR

Type Image logic operation

Description
It is used to calculate the exclusive or image of image src1 and

image src2.

Grammar

ZV_XOR (src1, src2, dst)

src1: ZVOBJECT type, single-channel image

dst: ZVOBJECT type, the result image after bitwise inversion

of each element of src

dst: ZVOBJECT type, result image of each element of XOR

src1 and src2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

148

Example

ZVOBJECT bin1, bin2, dst

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1)'store data into TABLE(0)

ZV_IMGGENCONST(bin1,3,3,1,0,0)

TABLE(20, 1, 0, 0, 1, 0, 1, 1, 1, 1)'store data into TABLE(0)

ZV_IMGGENCONST(bin2,3,3,1,0,20)

ZV_XOR(bin1, bin2,dst) 'bitwise XOR image of images src1 and

src2

5.6.3. Statistics

5.6.3.1. ZV_NONZEROCOUNT – Non 0 Element Numbers

Type Statistics

Description

It is used to count the number of non-zero elements in src.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_NONZEROCOUNT(src,tabId) or

count = ZV_NONZEROCOUNT(src)

src: ZVOBJECT type, image or matrix

tabId: TABLE index, the number of src non-zero elements

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1) 'save data into TABLE (0)

ZV_IMGGENCONST(img,3,3,1,0,0)

ZV_NONZEROCOUNT(img,0) 'count the number of non-0

149

elements in src type information, and save the counted result

into TABLE (0).

5.6.3.2. ZV_SUM – Sum for Elements

Type Statistics

Description It is used to sum in all elements of each independent channel.

Grammar

ZV_SUM(src,tabId)

src: ZVOBJECT type, image or matrix

tabId: TABLE index, sum each channel’s all elements

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT rgb

ZV_READIMAGE(rgb,"test.jpg",0)

‘read image in the original format

ZV_SUM(rgb, 0) ‘r channel sum value is TABLE(0), g channel

sum value is TABLE(1), b channel sum value is TABLE(2)

5.6.3.3. ZV_STATROW – Row Element Statistic

Type Statistics

Description
It is used to count each row’s elements, and calculate the

counted value.

Grammar

ZV_STATROW(src,dst,type)

src: ZVOBJECT type, image or matrix of single-channel

tabId: TABLE index, matrix, counted result, row N, column 1

type: type of statistic, 0 – sum, 1- average, 2 – max, 3 – min

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src，dst

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1) ‘save data into TABLE(0)

ZV_IMGGENCONST(src,3,3,1,0,0)

ZV_STATROW(src,dst,0) ‘count row elements in matrix

150

in sum method to dst.

5.6.3.4. ZV_STATCOL – Column Element Statistic

Type Statistics

Description
It is used to count each column’s elements, and calculate the

counted value.

Grammar

ZV_STATCOL(src,dst,type)

src: ZVOBJECT type, image or matrix of single-channel

tabId: TABLE index, matrix, counted result, row 1, column N

type: type of statistic, 0 – sum, 1- average, 2 – max, 3 – min,

when type is 0 and 1, data type is 64F, when type is 2 and 3, dst

type is image, so data type is same as src. If the type is matrix,

the data type is 64F.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src，dst

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1) ‘save data into TABLE(0)

ZV_IMGGENCONST(src,3,3,1,0,0)

ZV_STATCOL(src,dst,0) ‘count column elements in

matrix in sum method to dst.

5.6.3.5. ZV_MEAN – Average Value

Type Statistics

Description It is used to count the average value of each channel.

Grammar

ZV_MEAN(src,tabId)

src: ZVOBJECT type, image or matrix

tabId: TABEL index, average value of each channel

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT img

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1) ‘save data into TABLE(0)

151

ZV_IMGGENCONST(img,3,3,1,0,0)

ZV_MEAN(img, 0) ‘calculate average of image src’s each

channel into TABLE(0)

5.6.3.6. ZV_MEANSDEV – Average Value and Standard Deviation

Type Statistics

Description
It is used to count the average value and standard deviation of

each channel.

Grammar

ZV_MEAN(src,tabId)

src: ZVOBJECT type, image or matrix

tabId: TABEL index, they are average value and standard

deviation of each channel in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1) ‘save data into TABLE(0)

ZV_IMGGENCONST(img,3,3,1,0,0)

ZV_MEANSDEV(img, 0) ‘calculate average value of standard

deviation of each channel and save them into TABLE(0).

5.6.3.7. ZV_MINMAXLOC – Location of Minimal & Maximum

Type Statistics

Description

It is used to the value and position of minimal and maximum,

values and position are saved continuously, the minimal value is

in the front.

Grammar

ZV_MINMAXLOC(src,tabId)

src: ZVOBJECT type, single-channel image or matrix

tabId: TABEL index, 6 output parameters, the positioning

result is min, x,y coordinates of min, max, x,y coordinates of max.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

152

Example

ZVOBJECT img

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1) ‘save data into TABLE(0)

ZV_IMGGENCONST(img,3,3,1,0,0)

ZV_MEANSDEV(img, 0) ‘image minimal value in TABLE (0),

the coordinate is (TABLE(1), TABLE(2)), the maximum value is

TABLE(3), the coordinate is (TABLE(4), TABLE(5))

5.6.3.8. ZV_HIST -- Histogram

Type Statistics

Description

It is used to calculate the histogram of grayscale image.

Histogram: the number of pixels of each kind of grayscale

image, and it reflects the frequency of each kind of grayscale.

Grammar

ZV_HIST(src,hist,size,lower,upper)

src: ZVOBJECT type, single-channel image or matrix

hist: ZVOBJECT type, calculated histogram result, matrix

type

size: the number of histogram data segments, the

maximum value is 8192, the minimum value is 1

lower: the minimum value of src included in the histogram,

pixels with a grayscale lower than this value will not be included

in the statistics

upper: the maximum value of src included in the histogram,

pixels with a grayscale greater than this value will not be

included in the statistics

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT img

153

TABLE(0, 0, 1, 0, 1, 1, 1, 0, 0, 1) ‘save data into TABLE(0)

ZV_IMGGENCONST(img,3,3,1,0,0)

ZV_HIST(src,hist,256,0,255) 'calculate the histogram of the

image hist

5.7. Preprocessing

5.7.1. Color

5.7.1.1. ZV_RGBTOGRAY – From RGB To Grayscale

Type Color

Description
It is used to convert RGB or RGBA form image to grayscale

image, 8U or 16U type, gray = r*0.299 + g*0.587 + b*0.114.

Grammar

ZV_RGBTOGRAY(src, dst)

src: ZVOBJECT type, images of 3-channel rgb or 4-channel

rgba

 dst: ZVOBJECT type, single-channel gray image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT rgb, gray

ZV_READIMAGE(rgb,"test.jpg",0) ‘read image in the original

format

ZV_RGBTOGRAY(rgb,gray) 'from rgb to grayscale

Related Instruction ZV_GRAYTORGB

154

5.7.1.2. ZV_GRAYTORGB – From Grayscale To RGB

Type Color

Description
It is used to convert grayscale image to RGB or RGBA, 8U or 16U

type.

Grammar

ZV_GRAYTORGB(src, dst)

src: ZVOBJECT type, grayscale image

dst: ZVOBJECT type, 3-channel rgb image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0) ‘read image in the original

format

ZV_GRAYTORGB(src, dst) 'from grayscale to rgb

Related Instruction ZV_RGBTOGRAY

5.7.1.3. ZV_COLORTORGB – From Other Colors To RGB

Type Color

Description It is used to convert other colors images to RGB, 8U type.

Grammar

ZV_COLORTORGB(src, dst, colorSpace)

src: ZVOBJECT type, source image is the 3-channel image

dst: ZVOBJECT type, image

colorSpace: other colors space, refer to “from RGB to other

colors”.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

155

Example

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0) ‘read image in the original

format

ZV_COLORTORGB(src, dst, 1) 'from HSV form to RGB

5.7.1.4. ZV_RGBTOCOLOR – From RGB To Other Colors

Type Color

Description It is used to convert RGB images to other colors, 8U type.

Grammar

ZV_RGBTOCOLOR(src, dst, colorSpace)

src: ZVOBJECT type, RGB source image

dst: ZVOBJECT type, image that needs to be converted

colorSpace: color space

colorSpace Description

0 YUV

1 HSV

2 Lab

3 HLS

4 YCrCb

5 Luv

6 XYZ

7 RGBA

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

156

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0) ‘read image in the original

format

ZV_RGBTOCOLOR(src, dst, 1) 'convert the RGBA color of

src image to dst image

5.7.1.5. ZV_BAYERTORGB – From Bayer To RGB

Type Color

Description It is used to convert bayer images to rgb images, 8U or 16U type.

Grammar

ZV_BAYERTORGB(src, dst, bayerType)

src: ZVOBJECT type, single-channel bayer image

dst: ZVOBJECT type, 3-channel rgb image

bayerType: bayer type

bayerType Description

0 BG

1 GB

2 RG

3 GR

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0)

‘read image in the original format

ZV_BAYERTORGB(src, dst, 0) 'convert the image src with

bayer type to image dst with RGB

5.7.2. Geometric Transformation

5.7.2.1. ZV_MIRROR – Mirror

Type Geometric transformation

157

Description

Calculate the mirror of the image, image homogeneous

coordinate ring transformation formula:

Below is one horizontal mirror, flip along the axis y, then:

Flip along the axis x:

Flip along the axis y:

Mirror of origin point:

158

Grammar

ZV_MIRROR(src,dst,type)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, image after mirroring

type: mirror type:

0- vertical mirroring, the flip axis is the horizontal axis, that

is, flip up and down.

1- horizontal mirror, the flip axis is the vertical axis, that is,

flip left and right.

2- diagonal mirror, the flip axis is the main diagonal, that

is, both the horizontal and vertical axes are used as the

flip axis, flipping is performed along both axes

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0)

‘read image in the original format

ZV_MIRROR(src, dst, 1) 'dst is the horizontally mirrored

image of the generated source image src

5.7.2.2. ZV_ROTATE – Rotation

Type Geometric transformation

Description

Rotate the image clockwise by angle around the center point, the

unit is angle, and the image homogeneous coordinate ring

transformation formula:

Below is one rotation example:

159

Grammar

ZV_ROTATE(src,dst,angle,interp)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the rotated image has the same size

and type as the original image

angle: rotation angle, the direction is determined according

to the image coordinate system, clockwise is positive

interp: interpolation algorithm

Value Description

0 nearest neighbor interpolation

1 bilinear interpolation

2 bicubic interpolation

3 LANCZOS

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0)

‘read image in the original format

ZV_ROTATE(src, dst, 30, 0) 'assign the src image that is

rotated 30 degrees to dst image

160

5.7.2.3. ZV_ZOOM – Scale Factor Zooming

Type Geometric transformation

Description

The image src is scaled according to the scaling factors sx and

sy, and the image homogeneous coordinate ring transformation

formula is:

Below shows one zooming example:

Grammar

ZV_ZOOM(src,dst,sx,sy,interp)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the zoomed image

sx: the zoom ratio in the width direction, > 0, the zoomed

width is src.width * sx, and the zoomed width is rounded down

sy: the scaling ratio in the height direction, ≥ 0, if it is = 0,

take sy = sx, the height after scaling is src.height * sy, and the

height after scaling is rounded down

interp: interpolation algorithm

Value Description

0 nearest neighbor interpolation

1 bilinear interpolation

2 bicubic interpolation

3 LANCZOS

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

161

Example

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0)

‘read image in the original format

ZV_ROTATE(src, dst, 0.5, 0.5, 1)

‘both width and height are reduced to half

5.7.2.4. ZV_RESIZE – Target Size Zooming

Type Geometric transformation

Description According to the size of target image, zoom in and out the src.

Grammar

ZV_RESIZE(src,dst,dw,dh,interp)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the zoomed image

dw: image width after zooming, the range is [1, 32766]

dh: image height after zooming, the range is [1, 32766]

interp: interpolation algorithm

Value Description

0 nearest neighbor interpolation

1 bilinear interpolation

2 bicubic interpolation

3 LANCZOS

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(rgb,"test.jpg",0)

‘read image in the original format

ZV_ROTATE(src, dst, 512, 512, 1) ‘the image is scaled to

512x512 size, using bilinear interpolation, and the size of dst is

512x512

162

5.7.2.5. ZV_AFFINE – Image Affine Transformation

Type Geometric transformation

Description

Perform affine transformation on the image, and the image

homogeneous coordinate ring transformation formula:

⚫ translation transformation: the figure below is a schematic

diagram of translation.

⚫ shear transformation: below is a schematic diagram of

shearing along the x-axis.

➢ shear along axis x:

➢ shear along axis y:

163

Grammar

ZV_AFFINE(src,mat,dst[,dw = 0,dh = 0,interp = 1,border = "0"])

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

mat: ZVOBJECT type, radial transformation matrix, 2 rows

and 3 columns or 3 rows and 3 columns

dst: ZVOBJECT type, transformed image

dw: the width of the dst image, the default is 0, which is

equal to src, and the range is [1,32766]

dh: the height of the dst image, the default value is 0, equal

to src, range [1,32766]

interp: interpolation algorithm, default bilinear

interpolation, refer to “ZV_ROTATE”.

border: string type, border processing method, default value

"0", fill with 0 beyond the image part, commonly used values are

as follows:

Value Description

“0” Make up 0 to fill in `iiiiii|abcdefgh|iiiiiii`

“mirror1” element symmetric `gfedcb|abcdefgh|gfedcba`

“mirror” boundary symmetry `fedcba|abcdefgh|hgfedcb`

“continue” repeat `aaaaaa|abcdefgh|hhhhhhh`

“wrap” surround `cdefgh|abcdefgh|abcdefg`

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat, src, dst

ZV_READIMAGE(rgb,"test.jpg",0)

‘read image in the original format

ZV_IMGINFO((src,0)

ZV_GETSIMILARITYP(mat,TABLE(0)/2,TABLE(1)/2,30,0.8)

'the image mat is rotated 30° around the center and reduced by

0.8, the size of the image remains the same, and the surrounding

padding is 0

ZV_AFFINE(src, mat,dst,0,0,1,"0")

164

5.7.2.6. ZV_WRAPRECT2 – Capture Rotated Rectangle Image

Type Geometric transformation

Description
Extract the area image specified by the rotation rectangle roi

from the image, and the roi should not exceed the range of img

Grammar

ZV_WARPRECT2(img,subImg,cx,cy,w,h,angle,interp)

img: ZVOBJECT type, the source image is a single-channel

or three-channel image

subImg: ZVOBJECT type, the captured image

cx: the x coordinate of the center of the rotating rectangle

cy: the x coordinate of the center of the rotating rectangle

w: the width of the rotated rectangle, > 1, range [1,32766]

h: height of the rotated rectangle, > 1, range [1,32766]

angle: rotation rectangle angle, image coordinate system,

clockwise is negative, the unit is degree

interp: interpolation algorithm, if it is < 0, it defaults to

bilinear interpolation, refer to “ZV_ROTATE”.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_WARPRECT2(src,dst,406,280,400,105,-13,0)

'capture image from src

5.7.2.7. ZV_WRAPRING – Capture Ring Image

Type Geometric transformation

Description
Extract the area image specified by the ring roi from the image,

and the roi should not exceed the range of img

165

Grammar

ZV_WARPRING

(src,subImg,cx,cy,radius,annR,startA,extentA,interp)

img: ZVOBJECT type, the source image is a single-channel

or three-channel image

subImg: ZVOBJECT type, the captured image

cx: the x coordinate of the center of the circle

cy: the y coordinate of the center of the circle

radius: the radius of the centerline of the ring, > 0

annR: ring width, (0,r)

startA: the starting angle of the ring, the image coordinate

system, clockwise is positive, the unit is degree

extentA: angle range, the range is (0,360], if it is > 360, take

360, the unit is degree

interp: interpolation algorithm, if it is < 0, it defaults to

bilinear interpolation, refer to “ZV_ROTATE”.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_WARPRING(src, dst,320,240,60,20,0,270,1)

'capture image from src

5.7.3. Filtering

Image filtering refers to suppressing the noise of the target image under the condition

of preserving image details as much as possible, which is an indispensable operation in

image preprocessing.

166

5.7.3.1. ZV_MEDIANBLUR – Media Filtering

Type Filtering

Description

Median filtering is a nonlinear smoothing technique that can be

used to remove isolated noise points. The median filter can

protect the edge of the signal from being blurred while filtering

out the noise. These characteristics are not available in the

linear filtering method.

Principle: it sets the gray value of each pixel as the median value

of the gray values of all pixels in a certain neighborhood window

of the point. Examples are as follows:

Grammar

ZV_MEDIANBLUR(src,dst,size)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, filtered image

size: filter size, range is [1,201], preferably an odd number, if

an even number is input, the operator will automatically convert

it to the nearest odd number.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_MEDIABLUR(src, dst,3) '3*3 median filter

167

5.7.3.2. ZV_MEANBLUR – Mean Filtering

Type Filtering

Description

Mean filtering is a typical linear filtering algorithm.

Principle: use average value to replace each pixel value in the

original image. Boundary handling is element-wise symmetric

(see Custom Morphology).

Calculation formula:

“m” means the total number of pixels in this template that

includes current pixel.

Example:

Grammar

ZV_MEANBLUR(src,dst,size)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, filtered image

size: filter size, range is [1,201].

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_MEANBLUR(src, dst,3) '3*3 mean filter

168

5.7.3.3. ZV_GAUSSBLUR – Gaussian Filtering

Type Filtering

Description

Gaussian filtering is a linear smoothing filter, which is suitable

for eliminating Gaussian noise and is widely used in the noise

reduction process of image processing. Boundary handling is

element-wise symmetric (see Custom Morphology).

Two-dimensional Gaussian function:

Image:

Commonly used 3*3 and 5*5 gaussian template: (standard

difference = 1.3)

Grammar

ZV_GAUSSBLUR (src,dst,size)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, filtered image

size: filter size, range is [1,201], preferably an odd number, if

an even number is input, the operator will automatically convert

it to the nearest odd number.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

169

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_GAUSSBLUR(src, dst,3) '3*3 gaussian filter

5.7.3.4. ZV_BILATERALFLR – Bilateral Filtering

Type Filtering

Description Image bilateral filter.

Grammar

ZV_BILATERALFLR (src,dst,sigmaSpace,sigmaRange)

src: input image

dst: output image

sigmaSpace: space filtering parameters, range is [1, 50]

sigmaRange: value filtering parameters, range is [1, 50]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_GAUSSBLUR(src, dst,3,3) 'image bilateral filtering

5.7.3.5. ZV_SCHARR – SCHARR Filtering

Type Filtering

Description SCHARR filtering.

170

Grammar

ZV_SCHARR (src,dst,dx,dy)

src: input image

dst: output image

dx: derivative order in the x direction, can only be 0 or 1

dy: derivative order in the y direction, can only be 0 or 1 and

dx+dy must be equal to 1

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_SCHARR(src, dst, 1, 0) 'SCHARR filtering

5.7.3.6. ZV_SOBEL – Sobel Edge Detection

Type Filtering

Description

Sobel operator is a discrete differential operator mainly used for

edge detection. It combines Gaussian smoothing and

differential derivation to compute approximate gradients for

grayscale images.

Detect horizontal transformation, the 3*3 kernel is:

Detect horizontal transformation, the 3*3 kernel is:

Grammar

ZV_SOBEL(src,dst,dx,dy,size)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, filtered image, data type 64F

dx: derivative order in x direction, range [0, max(size,3)]

dy: Derivative order in the y direction, range [0, max(size,3)],

171

please note that dx and dy cannot be 0 at the same time.

size: filter size, range [1,31], take an odd value, the common

value is 3, if the even number is taken, it will be automatically

converted to the nearest odd number.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_SOBEL(src, dst, 2, 2, 3) '3*3 filtering size, sobel edge

detection

5.7.3.7. ZV_LAPLACE – Laplacian Edge Detection

Type Filtering

Description

The Laplacian operator correctly locates the step edge points in

the image, but is very sensitive to noise, and will lose part of the

direction information of the edge, resulting in some

discontinuous detection edges. The Laplacian operator is a

second-order differential operator in n-dimensional Euclidean

space.

Suppose the picture is f𝱷, the definition of Laplacian operator:

Laplacian kernel of 3*3 is:

172

Grammar

ZV_LAPLACE(src,dst,size)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the filtered image, the data type is the

same as src

size: filter size, range [1,31], odd

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_SOBEL(src, dst, 3) '3*3 Laplace edge detection.

5.7.3.8. ZV_CANNY – CANNY Edge Detection

Type Filtering

Description

Canny edge detection, the steps are as follows:

1. use Gaussian filtering to eliminate noise, for example, a 3*3

Gaussian kernel:

2. calculate gradient magnitude and direction:

(1) use sobel operator to obtain image gradient in the directions

of x and y:

(2) use below formula to calculate gradient magnitude and

173

direction

(The general values of the gradient direction are: 0° , 45° , 90° ,

135°)

3. non-maximum suppression: this step excludes non-edge

pixels and only retains some thin lines (candidate edges)

4. hysteresis threshold:

 Canny uses hysteresis thresholds (high and low

thresholds):

(1) If the magnitude of a certain pixel location exceeds the high

threshold, the pixel is retained as an edge pixel.

(2) If the magnitude of a certain pixel position is less than the

low threshold, the pixel is excluded.

(3) If the magnitude of a pixel location is between two

thresholds, the pixel is only kept if it is connected to a pixel

above the upper threshold.

Grammar

ZV_CANNY(src,dst,thresh1,thresh2,size)

src: ZVOBJECT type, the source image is single-channel or

three-channel image

dst: ZVOBJECT type, edge image

thresh1: low threshold

thresh2: high threshold, > thresh1

size: filter size, range [3, 7], odd

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_SOBEL(src, dst, 10, 200, 3) '3*3 filtering, Canny edge

detection

174

5.7.3.9. ZV_GRADIENT – Gradient Calculation

Type Filtering

Description

Calculate the image gradient. The horizontal gradient and

vertical gradient use the sobel operator to calculate the gradient

in the x-axis and y-axis directions. All gradients are calculated

by the following formula.

Gradient magnitude:

Gradient direction:

Grammar

ZV_GRADIENT(src,dst,type)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the gradient image

type: type of gradient, 0 – horizontal gradient, 1 – vertical

gradient, 2 – all gradients.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_SOBEL(src, dst, 0) 'calculate image’s horizontal gradient.

175

5.7.4. Frequency Domain Processing

5.7.4.1. ZV_DFT -- Fourier Transform

Type Frequency domain

Description

Fourier transform, from the instant domain to the frequency

domain, and the output spectrum size will be larger than the

input image size because fast Fourier transform is used.

Grammar

ZV_DFT(src,dst)

src: input single channel image

dst: output spectrum, the spectrum is a double-channel

single-precision floating-point image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT src, dst

ZV_DFT(src,dst) 'convert image into spectrum

5.7.4.2. ZV_IDFT – Inverse Fourier Transform

Type Frequency domain

Description

Fourier transform inversely, from the frequency domain to

instant domain, the image obtained after inverse transformation

will have black areas on the left and bottom, so a part of the

image is intercepted by width and height, and the interception

starts from the upper left corner.

Grammar

ZV_IDFT(src,dst,width,height)

src: input spectrum, two-channel single-precision image

dst: output single image

width: the width of the output image, > 0, ≤ the width of src

height: the height of the output image, > 0, ≤ the height of

src

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

176

Example

ZVOBJECT src, dst

ZV_IDFT(src,dst,width,height)

'convert the spectrum into an image

5.7.4.3. ZV_MULSPECTRUM – Multiple Spectrum

Type Filtering

Description Multiple 2 spectrums.

Grammar

ZV_MULSPECTRUM(src1,src2,dst)

src1: input spectrum, dual-channel single-precision

floating-point image

src2: input spectrum, the same size and type as src1

dst: output spectrum, the same size and type as src1

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT src1, src2, dst

ZV_MULSPECTRUM(src1,src2,dst) 'multiply two spectra

5.7.4.4. ZV_GENGAUSSFILTER – Gaussian Filter

Type Filtering

Description It is used to generate a frequency-domain Gaussian filter.

Grammar

ZV_GENGAUSSFILTER(filter,width,height,sigma1,sigma2)

filter: output filter, dual-channel single-precision floating-

point image

width: filter width, positive integer

height: filter height, positive integer

sigma1: the filter corresponds to the standard deviation in

the horizontal direction in the airspace, non-negative

sigma2: the filter corresponds to the standard deviation in

the vertical direction in the airspace, non-negative, sigma1 and

sigma2 cannot be 0 at the same time

Controller It is valid in controllers that support ZV function or they belong

177

to 5XX series or above.

Example

ZVOBJECT filter

ZV_GENGAUSSFILTER(filter,5,5,3,0)

'Generate frequency domain Gaussian filter

5.7.4.5. ZV_GENLPFILTER – Ideal Lowpass Filter

Type Filtering

Description It is used to generate a frequency-domain ideal lowpass filter.

Grammar

ZV_GENLPFILTER(filter,width,height,frequency)

filter: output filter, dual-channel single-precision floating-

point image

width: filter width, positive integer

height: filter height, positive integer

frequency: cut-off frequency, which is a scaling factor of

width and height, interval [0,1]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT filter

ZV_GENLPFILTER(filter,5,5,0.3)

'Generate an ideal low-pass filter in the frequency domain

5.7.4.6. ZV_GENHPFILTER – Ideal High Pass Filter

Type Filtering

Description It is used to generate a frequency-domain ideal high-pass filter.

Grammar

ZV_GENHPFILTER(filter,width,height,frequency)

filter: output filter, dual-channel single-precision floating-

point image

width: filter width, positive integer

height: filter height, positive integer

frequency: cut-off frequency, which is a scaling factor of

width and height, interval [0,1]

178

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT filter

ZV_GENHPFILTER(filter,5,5,0.3)

'Generate an ideal high-pass filter in the frequency domain

5.7.4.7. ZV_LPFILTER – Gaussian Lowpass Filter

Type Filtering

Description
Frequency-domain Gaussian lowpass filter, is to blur the image

and remove details.

Grammar

ZV_LPFILTER(src,dst,sizex,sizey)

src: input image, single-channel

dst: output image, single-channel

sizex: the size in the x direction of the filter space, a positive

integer, the larger the size, the blurrier the image

sizey: the size of the y direction in the filter space, a positive

integer, the larger the size, the blurrier the image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src,dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original image format

ZV_LPFILTER(src,dst,3,3)

'generate Gaussian low-pass filter in frequency domain

5.7.4.8. ZV_HPFILTER – Gaussian High-Pass Filter

Type Filtering

Description Frequency-domain Gaussian high-pass filter, is to get details.

Grammar

ZV_HPFILTER(src,dst,sizex,sizey)

src: input image, single-channel

dst: output image, single-channel

179

sizex: the size in the x direction of the filter space, a positive

integer, the larger the size, the blurrier the image

sizey: the size of the y direction in the filter space, a positive

integer, the larger the size, the blurrier the image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src,dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original image format

ZV_hPFILTER(src,dst,3,3)

'generate Gaussian high-pass filter in frequency domain

5.7.5. Morphology

5.7.5.1. ZV_ERODE – Erosion

Type Morphology

Description

Erosion of kw*kh rectangular structure, for a binary image,

assume that the current pixel is white, if one of its neighbors is

a black pixel, then turn the current pixel into black. If it is a

grayscale image, then take the minimum value of current pixel’s

neighbor. Boundary processing is element symmetry, which can

refer to custom morphology. The corrosion diagram is as

follows:

Grammar

ZV_ERODE(src,dst,kw[,kh = 0])

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the etched image

kw: structural element width, range [1,511]

kh; structure element height, range [1,511], if it is 0 then kh

180

= kw

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

’read the picture in the original image format

ZV_ERODE(src,dst,3,3) 'matrix erosion, 3*3 structural elements

5.7.5.2. ZV_DILATE – Expansion

Type Morphology

Description

Expansion of kw*kh rectangular structure, for a binary image,

assume that the current pixel is black, if one of its neighbors is

a white pixel, then turn the current pixel into white. If it is a

grayscale image, then take the maximum value of current pixel’s

neighbor. Boundary processing is element symmetry, which can

refer to custom morphology. The corrosion diagram is as

follows:

Grammar

ZV_ERODE(src,dst,kw[,kh = 0])

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the expanded image

181

kw: structural element width, range [1,511]

kh; structure element height, range [1,511], if it is 0 then kh

= kw

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

’read the picture in the original image format

ZV_DILATE(src,dst,3,3)

'matrix expansion, 3*3 structural elements

5.7.5.3. ZV_OPENING – Opening Operation

Type Morphology

Description

The image opening operation of the rectangular structure is

equivalent to first erosion and then expansion, which is used to

remove isolated small pixels.

Boundary processing is element symmetry, which can refer to

custom morphology.

Grammar

ZV_OPENING(src,dst,kw[,kh = 0])

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, opening operated image

kw: structural element width, range [1,511]

kh; structure element height, range [1,511], if it is 0 then kh

= kw

182

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

’read the picture in the original image format

ZV_OPENING (src,dst,5,5)

'opening operation, 5*5 structural elements

5.7.5.4. ZV_CLOSING – Closing Operation

Type Morphology

Description

The image closing operation of the rectangular structure is

equivalent to first expansion and then erosion, which is used to

connect broken pixels together.

Boundary processing is element symmetry, which can refer to

custom morphology.

Grammar

ZV_OPENING(src,dst,kw[,kh = 0])

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, opening operated image

kw: structural element width, range [1,511]

kh; structure element height, range [1,511], if it is 0 then kh

= kw

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

183

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

’read the picture in the original image format

ZV_CLOSING(src,dst,5,5)

'closing operation, 5*5 structural elements

5.7.5.5. ZV_MORPHSE – Custom Structural Element

Type Morphology

Description
It is used to generate structuring elements for custom

morphology.

Grammar

ZV_MORPHSE(kernel,shape,width,height,anchorX,anchorY)

kernel: ZVOBJECT type, the generated structural element

shape: the shape of the structural element, range [0,2], 0-

rectangle, 1-cross, 2-ellipse, that is, an ellipse that fills the

rectangle of the corresponding size

width: width of the structural element, range [1,511]

height: structural element height, range [1,511]

anchorX: the x coordinate of the anchor point in the

structural element coordinate system, the range is [0, width), -1

takes the center

anchorY: the y coordinate of the anchor point in the

structural element coordinate system, the range [0, height), -1

takes the center

Controller It is valid in controllers that support ZV function or they belong

184

to 5XX series or above.

Example

ZVOBJECT k

ZV_MORPHSE(k,0,5,5,-1,-1)

'generate a 5x5 rectangular structuring element with an anchor

in the center

5.7.5.6. ZV_MORPH – Custom Morphology

Type Morphology

Description Custom morphology operation

Grammar

ZV_MORPH(src, kernel, dst, op, anchorX, anchorY, iter[, border =

"continu e"])

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

kernel: ZVOBJECT type, morphological structure element,

generated by ZV_MORPHSE command

dst: ZVOBJECT type, image after morphological processing

op: morphological operation type: 0-corrosion, 1-

expansion, 2-opening operation, 3-closing operation, 4-

morphological gradient, 5-top hat, 6-bottom hat

anchorX: the x coordinate of the anchor point of the

structural element, the range is [0, the width of the structural

element), if it is -1, the center is taken

anchorY: the y coordinate of the anchor point of the

structural element, the range is [0, the height of the structural

element), if it is -1, the center is taken

iter: number of executions, range [1,20], common value 1

border: border processing, the values are as follows

Value Constant

“mirror1” Element symmetric `gfedcb|abcdefgh|gfedcba`

“mirror” Boundary symmetry `fedcba|abcdefgh|hgfedcb`

“continue” Repeat `aaaaaa|abcdefgh|hhhhhhh`

description: the vertical line on the right indicates the image

boundary, and the letters indicate the pixel values at different

185

distances from the boundary

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT k, src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original image format

ZV_MORPHSE(k,0,5,5,-1,-1)

'generate a 5x5 rectangular structuring element with an anchor

in the center

ZV_MORPH(src,k,dst,2,-1,-1,2,"continue")

'perform two opening operations on src with a rectangular

structure of size 5x5

5.7.6. Image Enhancement

5.7.6.1. ZV_HISTEQ – Histogram Equalization

Type Image enhancement

Description

Grayscale image histogram equalization is an important

application of grayscale transformation. It is a method to

enhance image contrast by stretching the pixel intensity

distribution range. It is efficient and easy to implement, and is

widely used in image enhancement processing. Histogram

equalization steps:

1. Calculate image’s histogram H

2. Perform histogram normalization

3. Calculate the histogram integral

4. Use 𝱷H' as a lookup table for image transformation:

The effect before and after histogram equalization and

histogram comparison chart:

186

Grammar

ZV_HISTEQ(src,dst)

src: ZVOBJECT type, source image, single channel 8U

image

dst: ZVOBJECT type, image after histogram equalization

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

’read the image in the original format

ZV_HISTEQ(src,dst)

'the source image src histogram equalized image is dst

5.7.6.2. ZV_REVERSE – Image Inversion

Type Image enhancement

Description
Image inversion, white pixels become black pixels, black pixels

become white pixels

Grammar

ZV_REVERSE(src,dst)

src: ZVOBJECT type, the source image is a single-channel

or three-channel image

dst: ZVOBJECT type, the output image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

187

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original format

ZV_REVERSE(src,dst) 'reverse the color of src

5.7.6.3. ZV_GAMMATRANS – Gamma Transformation

Type Image enhancement

Description

Gamma transformation is performed on the image, and the

gamma transformation is often used to adjust the contrast of

the overexposed or underexposed (too dark) grayscale image.

The calculation formula is as follows:

Among them, c and y are normal numbers, c is the grayscale

scaling factor, usually 1. y is the gamma factor size, which

controls the scaling degree of the entire transformation.

188

Grammar

ZV_GAMMATRANS(src,dst,gama)

src: ZVOBJECT type, source image, single-channel image

dst: ZVOBJECT type, etched image

gama: gamma transformation value, a positive number.

when it is < 1, dark pixels are stretched and bright

pixels are compressed, and the smaller the gama value is,

the more obvious the effect is.

when it is = 1, no transformation is performed.

when it is > 1, bright pixels are stretched and dark

pixels are compressed, the value the bigger, the effect more

obvious.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original format

ZV_GAMMATRANS(src,dst,0.6)

'perform gamma transformation on src

5.7.6.4. ZV_LIGHTCOMPENSATION – Light Compensation

Type Image enhancement

Description

To perform illumination compensation on images with uneven

illumination, the main ideas are as follows:

1. Find the average gray level of the original image I.

2. Divide the original image into N*M blocks, calculate the

average value of each block, and obtain the brightness

matrix D of the sub-block.

3. Subtract the average gray level of the source image from

each element of the matrix D to obtain the brightness

189

difference matrix E of the sub-block.

4. Change the matrix E difference into a brightness distribution

matrix R with the same size as the source image.

5. Get the rectified image result = I - R.

Grammar

ZV_LIGHTCOMPENSATE(src,dst,blockSize)

src: ZVOBJECT type, source image, single-channel image

dst: ZVOBJECT type, image after lighting compensation

blockSize: the size of the image block processing, a positive

number, the smaller the size, the more obvious the light

compensation is, but the image information that is lost is more

obvious. It is recommended to use 32

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original format

ZV_LIGHTCOMPENSATION(src,dst,32)

'perform light compensation on image

5.7.6.5. ZV_SHADECORRECT -- Shadow Correction

Type Image enhancement

Description

The main ideas of shadow correction for unevenly illuminated

images are as follows:

1. Reduce the original image I by a certain ratio to get a small

image I_samll.

2. Filter the reduced image “I_small”.

3. Enlarge the reduced image I_small to get a new image I_big.

4. Get the corrected image result = I – I_big.

190

Grammar

ZV_SHADECORRECT(src,dst,filtersize)

src: ZVOBJECT type, source image, single-channel image

dst: ZVOBJECT type, image after shadow correction

filterSize: the size of the image to be filtered, >0, the smaller

the size, the more obvious the shadow correction, but the more

serious the loss of image information

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original format

ZV_SHADECORRECT(src,dst,32)

'perform shadow correction on image

5.7.6.6. ZV_GRAYSTRETCH – Grayscale Stretch

Type Image enhancement

Description

Perform gray scale stretching on the image, and manually

stretch the pixels that are smaller than the low threshold to 0,

and set the pixels that are larger than the high threshold to 255,

that is, stretch the pixels within the high and low thresholds to

0-255

Grammar

ZV_GRAYSTRETCH(src,dst,minVal,maxVal,type)

src: ZVOBJECT type, source image, single channel image

dst: ZVOBJECT type, image stretched in gray scale

minVal: low threshold, range [0,255]

maxVal: high threshold, range [0,255], high threshold is >

low threshold

type: stretching type, 0-manual, 1-automatic, the high and

low threshold parameters (minVal & maxVal) will not take effect

191

in the automatic type

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original format

ZV_GRAYSTRETCH(src,dst,50,200,0)

'stretch pixels with gray values in the range [50,200]

5.7.6.7. ZV_NORMALIZE – Image Normalization

Type Image enhancement

Description

Specify the mean and variance to normalize the image, that is,

the normalized image mean and variance are the specified mean

and variance.

Grammar

ZV_NORMALIZE(src,dst,mean,var)

src: ZVOBJECT type, source image, single-channel image

dst: ZVOBJECT type, normalized image

mean: mean, range [0,255]

var: variance, range [0,255]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

192

'read the picture in the original format

ZV_NORMALIZE(src,dst,120,50)

'specify the image whose mean is 120 and variance is 50 to

normalize the image

5.7.6.8. ZV_EMPHASIZE – Emphasize Image

Type Image enhancement

Description

Image enhancement is also called high-lift filtering, which

enhances the edge details of the image. Its steps are mainly:

1. Smooth original image: f → s

2. Subtract the blurred image from the original image, and the

resulting difference image is called the template: m = f – s.

3. Add the template to original image, g = f + k * m, and k > 1.

Grammar

ZV_EMPHASIZE(src,dst,kx,ky,factor)

src: ZVOBJECT type, source image, single channel image

dst: ZVOBJECT type, enhanced image, output

kx: filter x direction size, range [1,201]

ky: filter y-direction size, range [1,201]

factor: enhancement factor, the enhancement ratio of high-

frequency edge details, > 0, the larger the value, the stronger the

enhancement of edge details

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src, dst

ZV_READIMAGE(src,"test.jpg",0)

'read the picture in the original format

ZV_EMPHASIZE(src,dst,3,3,2) 'enhance image edge details

5.7.6.9. ZV_DOTSIMAGE – Image Dot Enhanced

Type Image enhancement

Description According to dot’s diameter in input image, enhance the

193

corresponding dot in image. And this operator is especially

suitable for segmentation of dot printing, for example, OCR

applications.

Grammar

ZV_DOTSIMAGE(src,dst,diameter,type,shift)

src: ZVOBJECT type, source image, single channel image

dst: ZVOBJECT type, enhanced image, output

diameter: the diameter of the point to be enhanced, optional

values: odd numbers from 3 to 23 (including 3 and 23)

type: enhance dark points, bright points, all points,

corresponding values: -1, 1, 0

shift: transform the response of the filter, enhancing

contrast (>0) or suppressing bright spots (-1). Valid values: -1,

0, 1, 2.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT src, dst

ZV_DOTSIMAGE(src,dst,10,-1,1)

5.7.7. Binarization

5.7.7.1. ZV_THRESH – Binarization

Type Segmentation.

Description

Generate a binary image, the pixel whose value is ≥ thresh0 and

≤ thresh1 is 255, otherwise it is 0. There is no limit to the range

of thresh0 and thresh1, and the judgment calculation is only

performed according to the above range.

Grammar

ZV_THRESH(src,dst,thresh0,thresh1)

src: ZVOBJECT type, image, unlimited channel numbers

and type

dst: ZVOBJECT type, binary image, single channel 8U type

thresh0: low threshold

thresh1: high threshold, thresh1 is ≥ to thresh0

Controller It is valid in controllers that support ZV function or they belong

194

to 5XX series or above.

Example

ZVOBJECT src,dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original format

ZV_THRESH(src,dst,95,255)'generate a binary image dst, the

pixel whose value is between 20-60 is 255, otherwise it is 0

5.7.7.2. ZV_ADPTHRESH – Adaptive Binarization

Type Segmentation.

Description

Perform adaptive thresholding on an input image, producing a

binary image. The effect of adaptive thresholding is similar to

high-pass filtering an image - extracting the contours of objects

whose size depends on the size of the filter as well as the

gradient magnitude of the object contours themselves. The

larger the filter size is, the larger the target area can be found.

According to experience, the filter size is usually twice of the

extracted target contour. What’s more, the offset range

parameter offset is also very important. It is best not to set

offset to 0, which will cause many small areas to be found

(usually noise). Values such as 5-40 are more commonly used.

The larger the offset, the smaller the extracted area

195

Grammar

ZV_ADPTHRESH(src,dst,filterType,filterSize,offset,type)

src: ZVOBJECT type, source image, single channel image

dst: ZVOBJECT type, binary image

filterType: filtering algorithm used: 0-Gaussian filter, 1-

mean filter

filterSize: filter size used, range [1,201]

offset: the allowable offset range of the result, range (-255,

255)

type: the result type, ranging from 0-3, the points in the

image that meet the type selection type will be used as the target

area for extraction

type Description

0 source image - filtered image is between [-offset,

offset], both bright and dark contours are extracted.

1 source image - filter image > offset or < -offset

2 source image - filtered image ≥ offset, bright contours

are extracted

3 source image - filtered image ≤ -offset, dark contours

are extracted

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src,dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original format

ZV_ADPTHRESH(src,dst,0,5,10,0)

'select the point where the difference between the image and its

own 5x5 Gaussian filter image is between -10 and 10, that is, the

smoother area

196

5.7.7.3. ZV_AUTOTHRESH – Automatic Binarization

Type Segmentation.

Description

Use the OTSU algorithm to calculate the optimal threshold and

threshold the image, the OTSU algorithm regards the white

pixels and black pixels after the threshold as two types, that is,

the algorithm is to find the best threshold to maximize the inter-

class variance of black and white pixels after thresholding.

Grammar

ZV_AUTOTHRESH(src,dst,tabId)

src: ZVOBJECT type, source image, single-channel image

dst: ZVOBJECT type, binary image

tabId: TABLE index, output parameters, used segmentation

threshold

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT src,dst

ZV_READIMAGE(src,"test.jpg",0)

'read the image in the original format

ZV_AUTOTHRESH(src,dst,0)

'threshold image using OTSU algorithm

? TABLE(0) 'print Threshold

197

Chapter VI Matching

6.1. Shape Matching

Note: the angle parameters of ZV_MCCREATESHAPE and ZV_MCCCREATESHAPESCALE

commands to create templates are the starting angle and angle range, and

ZV_SHAPECREATE and ZV_SHAPECREATERE are the starting angle and end angle.

For template matching based on shape contour, the matching process uses a pyramid,

and the origin of the template is the center of the image.

6.1.1. ZV_MCCREATESHAPE – Create the Template

Type Shape template creating

Description

Use the template image “img” and specify the effective area “re”

of the template image to create a shape matching template, and

this is mainly for when there is a lot of noise in the template

image, using the re area to specify that some parts of the

template image are valid to create a template instead of using

the entire template image. The effective area in the template

image is specified by the area re to create a template, and the

part with more noise in the template image can be removed by

performing some set operations or morphological operations on

the re area, so as to obtain a more robust template feature. The

created template reference position (template origin) is the

center of the template image, that is, ((width-1)/2.0,(height-

1)/2.0).

According to the setting of the system parameter

"ExtensionShape", the extension algorithm is supported, and the

reference position is the center of gravity of the area re.

Grammar

ZV_MCCREATESHAPE (img, re, model, angleStart, angleExt,

thresh [,ptRedu ce=0, minContLen=0, angleStep=0])

img: ZVOBJECT type, image for making templates, input

parameter, 8U single-channel

re: ZVOBJECT type, specify the effective area of the

198

template image, and the part corresponding to re in the template

image will be used to create the template. re is an area based on

run-length encoding, and its set operation is more convenient to

remove invalid parts and retain valid parts to create templates.

Usually, for template images with more noise or inconspicuous

contour features, re is used to remove weak features in the

template image and retain strong features. If re is empty, the

entire template is the valid area by default.

model: ZVOBJECT type, created template, output parameter

angleStart: starting angle, determined by the image

coordinate system, range [-180,180)

angleExt: angle range, range [0,360]. The end angle is the

start angle plus the angle range. After the template is created,

targets within the start and end angle ranges can be matched.

thresh: contrast threshold for extracting edge contours--

absolute threshold, range [0,255], when it is 0, an appropriate

threshold will be selected internally, the greater the contrast, the

stronger the strength of the extracted edge contour, this

parameter can control the extraction of strong edges or weak

edge, the smaller the threshold, the more weak-edges are

extracted, and it may bring some noise at the same time.

ptReduce: optimize to reduce the number of template

points. If you set the greedy degree when searching for

templates, it needs to set it lower, 0-no reduction, 1-slight

reduction, 2-moderate reduction, 3-large reduction

minContLen: minimum contour length, contours smaller

than this length will not be extracted, this parameter can control

the deletion of some short contours. When it is 0, the appropriate

contour is automatically calculated internally.

angleStep: angle step size, range [0,12]. The smaller the

step size, the better the accuracy but the more time-consuming

the matching. The larger the step size, the worse the accuracy

but the less time-consuming the matching. It is unreasonable to

set the step size too small or as when 0, an appropriate step size

will be automatically selected internally, and 0 is recommended.

199

Please attention since the angle needs to exceed 0, the angle

step obtained by using the command ZV_SHAPEPARAM will be

slightly different from angleStep.

Notes:

When creating a template, a target with a clear outline and

unique feature is usually selected as a template, and the

features should not be symmetric. The amount of template

feature data is usually related to the template size and template

parameters, and its data amount is proportional to the size of

the template, the complexity of the template outline, the range

of rotation angle, and the zoom range. The larger the template,

the smaller the angle step used, and the larger the amount of

feature data in the same angle range, so the matching time is

more time-consuming.

Creating a template and matching have a timeout

mechanism, the default are 5000ms, when creating a template

timeout, it can reduce the amount of template feature data by

adjusting the template parameters appropriately (such as

reducing the zoom range or using the outline point reduction

parameter ptReduce, the default value of this parameter If it is 0,

the contour points will not be simplified, and too serious

reduction may affect the matching accuracy), or manually set

the timeout period, such as ZV_SETSYSDBL

("ShapeCreateTimeout", 5000), ZV_SETSYSDBL

("ShapeFindTimeout", 5000).

Creating a template also has a memory protection

mechanism. When using an overly large template image to

create a template with scaling, the memory occupied reaches

the protection threshold. At this time, a memory error is reported

and the template creation fails. It can reduce the amount of data

by adjusting the template parameters, such as using the

ptReduce parameter streamlines some points, or the threshold

thresh is set to a larger point to only extract some obvious

contour features.

200

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img 'template image

ZVOBJECT model 'template

ZVOBJECT re ’specify the effective area of the template

image, and re needs to be generated, that is,

the part of the template image

corresponding to re is used to create the

template

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original format

ZV_REGENRECT(re,0,0,w,h) 'specify an area on the template

image for creating a template, w and

h are the width and height of the

template image respectively

ZV_MCCCREATESHAPE(img,re,model,-180,360,0,0,0,0)

'create template

Related Instruction ZV_MCFINDSHAPE, ZV_MCFINDSHAPESTATE

6.1.2. ZV_MCCREATESHAPESCALE – Create Scaling

Template

Type Shape template creating

Description

Use the template image “img” and specify the effective area “re”

of the template image to create a shape matching template, and

this is mainly for when there is a lot of noise in the template

image, using the re area to specify that some parts of the

template image are valid to create a template instead of using

the entire template image. The effective area in the template

image is specified by the area re to create a template, and the

part with more noise in the template image can be removed by

performing some set operations or morphological operations on

the re area, so as to obtain a more robust template feature. The

created template reference position (template origin) is the

201

center of the template image, that is, ((width-1)/2.0,(height-

1)/2.0).

According to the setting of the system parameter

"ExtensionShape", the extension algorithm is supported, and the

reference position is the center of gravity of the area re

Grammar

ZV_MCCREATESHAPESCALE (img, re, model, angleStart,

angleExt, ScaleMin, ScaleMax, thresh [,ptRedu ce=0,

minContLen=0, angleStep=0], scaleStep=0], levelNum=0)

img: ZVOBJECT type, image for making templates, input

parameter, 8U single-channel

re: ZVOBJECT type, specify the effective area of the

template image, and the part corresponding to re in the template

image will be used to create the template. re is an area based on

run-length encoding, and its set operation is more convenient to

remove invalid parts and retain valid parts to create templates.

Usually, for template images with more noise or inconspicuous

contour features, re is used to remove weak features in the

template image and retain strong features. If re is empty, the

entire template is the valid area by default.

model: ZVOBJECT type, created template, output parameter

angleStart: starting angle, determined by the image

coordinate system, range [-180,180)

angleExt: angle range, range [0,360]. The end angle is the

start angle plus the angle range. After the template is created,

targets within the start and end angle ranges can be matched.

scaleMin: minimum ratio of matching zoom, range [0.5, 2.0]

scaleMax: maximum ratio of matching zoom, range [0.5,

2.0], ≥ scale_min, after creating the template, targets within the

minimum and maximum scaling ranges can be matched.

thresh: contrast threshold for extracting edge contours--

absolute threshold, range [0,255], when it is 0, an appropriate

threshold will be selected internally, the greater the contrast, the

stronger the strength of the extracted edge contour, this

parameter can control the extraction of strong edges or weak

edge, the smaller the threshold, the more weak-edges are

202

extracted, and it may bring some noise at the same time.

ptReduce: optimize to reduce the number of template

points. If you set the greedy degree when searching for

templates, it needs to set it lower, 0-no reduction, 1-slight

reduction, 2-moderate reduction, 3-large reduction

minContLen: minimum contour length, contours smaller

than this length will not be extracted, this parameter can control

the deletion of some short contours. When it is 0, the appropriate

contour is automatically calculated internally.

angleStep: angle step size, range [0,12]. The smaller the

step size, the better the accuracy but the more time-consuming

the matching. The larger the step size, the worse the accuracy

but the less time-consuming the matching. It is unreasonable to

set the step size too small or as when 0, an appropriate step size

will be automatically selected internally, and 0 is recommended.

Please attention since the angle needs to exceed 0, the angle

step obtained by using the command ZV_SHAPEPARAM will be

slightly different from angleStep.

scaleStep: scaling step size, [0, scaleMax - scaleMin], the

smaller the step size, the better the accuracy but the more time-

consuming the matching, the larger the step size the worse the

accuracy but the less time-consuming the matching, the step

size is too small or when it is 0, an appropriate step size will be

automatically selected internally, and it is recommended to be

0. Please attention since the zoom needs to exceed 1, the zoom

step obtained by using the command ZV_SHAPEDEFPARAM will

be slightly different from the scaleStep.

levelNum: the number of pyramid layers, range [0, infinity),

the smaller the number of layers, the more time-consuming the

matching, if it is 0 or the number of layers is too large, it will

automatically select the appropriate number of layers, it is

recommended to be 0

Notes:

When creating a template, a target with a clear outline and

203

unique feature is usually selected as a template, and the

features should not be symmetric. The amount of template

feature data is usually related to the template size and template

parameters, and its data amount is proportional to the size of

the template, the complexity of the template outline, the range

of rotation angle, and the zoom range. The larger the template,

the smaller the angle step used, and the larger the amount of

feature data in the same angle range, so the matching time is

more time-consuming.

Creating a template and matching have a timeout

mechanism, the default are 5000ms, when creating a template

timeout, it can reduce the amount of template feature data by

adjusting the template parameters appropriately (such as

reducing the zoom range or using the outline point reduction

parameter ptReduce, the default value of this parameter If it is 0,

the contour points will not be simplified, and too serious

reduction may affect the matching accuracy), or manually set

the timeout period, such as ZV_SETSYSDBL

("ShapeCreateTimeout", 5000), ZV_SETSYSDBL

("ShapeFindTimeout", 5000).

Creating a template also has a memory protection

mechanism. When using an overly large template image to

create a template with scaling, the memory occupied reaches

the protection threshold. At this time, a memory error is reported

and the template creation fails. It can reduce the amount of data

by adjusting the template parameters, such as using the

ptReduce parameter streamlines some points, or the threshold

thresh is set to a larger point to only extract some obvious

contour features.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img 'template image

ZVOBJECT model 'template

ZVOBJECT re ’specify the effective area of the template

image, and re needs to be generated, that is,

204

the part of the template image

corresponding to re is used to create the

template

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original format

ZV_REGENRECT(re,0,0,w,h) 'specify an area on the template

image for creating a template, w and

h are the width and height of the

template image respectively

ZV_MCCCREATESHAPESCALE(img, re, model, -180, 360, 1, 1, 0,

0, 0, 0, 0, 0) 'create template

Related Instruction ZV_MCFINDSHAPE, ZV_MCFINDSHAPESTATE

6.1.3. ZV_MCFINDSHAPE – Matching

Type Shape template creating

Description

Use single-shape template to find and match in image “img”.

According to template type and expansion algorithm

parameters, it can support expansion algorithm.

205

Grammar

ZV_MCFINDSHAPE (model, img, matchs, minScore [,nums=0,

maxOverlap=0.5, minThresh=-1,accuracy=1,speed=9,polar=0,

deform=0, boundary=4])

model: ZVOBJECT type, shape template

img: ZVOBJECT type, the search image to be matched, it

cannot be 1:1 proportional to the template image, 8U single

channel

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 5 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, output all

targets with target scores from high to low.

maxOverlap: the maximum overlap rate. When the

overlapping part of the matching results exceeds, only the best

result will be kept. It is mainly used to remove overlapping target

objects. When there is only one target in the search map, the

parameter can also be set smaller, which will speed up the

matching speed but not obvious.

minThresh: the lowest edge threshold of the target contour,

when minThresh is < zero, the threshold when creating the

template will be used

accuracy: matching accuracy, 0-pixel accuracy, 1-

interpolation accuracy, 2-least squares fitting accuracy, 3-

multiple iterations least squares fitting accuracy. Accuracy 1

can meet most applications, 2 or 3 are used in occasions with

higher accuracy requirements, but it will also be more time-

consuming.

speed: matching speed 0-10, the bigger the speed, the

faster, but may lose the target, when it is > 10, take 10

206

polar: matching polarity

polar Polarity Description

0 + All contour points’ light and dark changes

of the matching target and the template are

consistent.

1 ± Both + and - are OK, and all contour points’

light and dark changes of the matching

target and the template are consistent or

inverse.

2 Any All contour points’ light and dark changes

of the matching target and the template are

consistent or inverse.

deform: deformation size, relative to the template, it allows

a slight deformation of the target contour, 0 - does not support

deformation. 1 - support slight deformation, but it is more time-

consuming, and can be combined with the matching threshold

to remove some noise interference to increase the speed.

boundary: boundary mode, the extent to which the target

contour exceeds the image boundary, 0-not exceeded, 1-a small

amount exceeded, 2-moderate exceeded, 3-a large amount

exceeded, 4-completely exceeded, and the matching time

increases in sequence. When using the border, it needs to be

used with the system parameter "ShapeOnBorder". The border

mode will only work when this parameter is set to 1. Please set

this value according to the actual situation.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod,img,re,matchImg,clrImg,rlts,

ZVOBJECT matRigid,modContList,dstContList

207

ZV_READIMAGE(img, "model.jpg", 0)

'read the image in the original format

ZV_READIMAGE(matchImg, "1.png", 0)

'read the image in the original format

ZV_MCCREATESHAPE(img,mod,re,-180,360,0,0,0,0)

'create template

ZV_MCSHAPECONTLIST(mod, modContList)

'get template outline

ZV_MCSHAPEFIND(mod,matchImg,rlts,90,1,0.6,-1,3,9,0)

'template matching

ZV_MATGETROW(rlts,0,5,0)

'obtain the first row of the matching

result matrix, which are: matching

score, x coordinate, y coordinate,

rotation angle “angle”, and scaling

“scale”

ZV_GETRIGIDVECTOR(matRigid,0,0,0,TABLE(1),TABLE(2),TABLE

(3))

'calculate rigid transformation matrix

ZV_CONTAFFINE(modContListt,matRigid,dstContList)

'contour affine transformation

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

ZV_CONTLIST(clrImg,dstContList,ZV_COLOR(0,255,0),0)

'draw the contour

Related Instruction ZV_MCCREATESHAPE, ZV_MCCREATESHAPESTATE

6.1.4. ZV_MCFINDSHAPESTATE – Match & Output Contour

State

Type Shape template creating

Description
Use single-shape template to find and match in image “img”,

also output the matching state of template contour point.

208

Grammar

ZV_MCFINDSHAPESTATE (model, img, matchs, stats, minScore

[,nums=0, maxOverlap=0.5, minThresh=-1, accuracy=1,

speed=9, polar=0, deform=0, boundary=4])

model: ZVOBJECT type, shape template

img: ZVOBJECT type, the search image to be matched, it

cannot be 1:1 proportional to the template image, 8U single

channel

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 5 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

stats: ZVOBJECT type, the matching status of each point of

the template contour point, m x n image type, one template

contour per row, and the matching status of each contour point

is stored sequentially on the row, that is, for a certain contour

point, the matching score is ≥ the set score, it is 1 (matching is

successful), when it is < the matching score, it is 0 (matching

fails, if it is empty, the contour point matching status will not be

output, if it is not empty, the contour point matching status will

be output, this output parameter is combined with the drawing

template command ZV_DRASHAPEMATCH, then matching

success points and failure points can be drawn in different

colors.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, output all

targets with target scores from high to low.

maxOverlap: the maximum overlap rate. When the

overlapping part of the matching results exceeds, only the best

result will be kept. It is mainly used to remove overlapping target

objects. When there is only one target in the search map, the

parameter can also be set smaller, which will speed up the

209

matching speed but not obvious.

minThresh: the lowest edge threshold of the target contour,

when minThresh is < 0, the threshold when creating the template

will be used

accuracy: matching accuracy, 0-pixel accuracy, 1-

interpolation accuracy, 2-least squares fitting accuracy, 3-

multiple iterations least squares fitting accuracy. Accuracy 1

can meet most applications, 2 or 3 are used in occasions with

higher accuracy requirements, but it will also be more time-

consuming.

speed: matching speed 0-10, the bigger the speed, the

faster, but may lose the target, when it is > 10, take 10

polar: matching polarity

polar Polarity Description

0 + All contour points’ light and dark changes

of the matching target and the template are

consistent.

1 ± Both + and - are OK, and all contour points’

light and dark changes of the matching

target and the template are consistent or

inverse.

2 Any All contour points’ light and dark changes

of the matching target and the template are

consistent or inverse.

deform: deformation size, relative to the template, it allows

a slight deformation of the target contour, 0 - does not support

deformation. 1 - support slight deformation, but it is more time-

consuming, and can be combined with the matching threshold

to remove some noise interference to increase the speed.

boundary: boundary mode, the extent to which the target

contour exceeds the image boundary, 0-not exceeded, 1-a small

amount exceeded, 2-moderate exceeded, 3-a large amount

exceeded, 4-completely exceeded, and the matching time

increases in sequence. When using the border, it needs to be

used with the system parameter "ShapeOnBorder". The border

210

mode will only work when this parameter is set to 1. Please set

this value according to the actual situation.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod,img,re,matchImg,clrImg,rlts,stats

ZV_READIMAGE(img,"model.jpg",0)

'read the image in the original image format

ZV_READIMAGE(matchImg,"1.png",0)

'read the image in the original image format

ZV_MCCCREATESHAPE(img,re,model,-180,360,0,0,0,0)

'create template

ZV_MCFINDSHAPESTATE(model,matchImg,rlts,stats,90,1,0.6,-

1,3,9,0) 'template matching

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

ZV_DRASHAPEMATCH(clrImg,model,rlts,stats,ZV_COLOR(0,255

,0),ZV_CO LOR(255,0,0))

'draw the template on the color image, and the contour

points that match successfully are drawn in green, and

the contour points that fail to match are drawn red

Related Instruction
ZV_MCCREATESHAPE, ZV_MCCREATESHAPESTATE,

ZV_DRASHAPEMATCH

211

6.1.5. ZV_MCFINDSHAPERE – Match Supported Area

Type Shape template matching

Description

Use single-shape template to find and match in image “img”.

According to template type and expansion algorithm

parameters, it can support expansion algorithm.

Grammar

ZV_MCFINDSHAPERE (model, img, re, matchs, minScore

[,nums=0, maxOverlap=0.5, minThresh=-1, accuracy=1,

speed=9, polar=0, deform=0, boundary=4])

model: ZVOBJECT type, shape template

img: ZVOBJECT type, the search image to be matched, 8U

single channel, size must be bigger than template image

re: ZVOBJECT type, valid region of specified matching

image

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 5 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, output all

targets with target scores from high to low.

maxOverlap: the maximum overlap rate. Normal range is [0,

1], 0 – not overlap, that is, objects that are not overlapped are

only found, 1 – overlap, that is, objects that are close are found.

The overlap ratio indicates the allowed overlap ratio of the

target. The overlap rate is calculated by dividing the overlap area

of the minimum external moment of the target contour feature

by the area of the minimum external moment. When the

overlapping part of the matching results exceeds, only the best

result will be kept. It is mainly used to remove overlapping target

objects. When there is only one target in the search map, the

212

parameter can also be set smaller, which will speed up the

matching speed but not obvious.

minThresh: the minimum edge threshold of the target

contour. When minThresh is set to -1, the minimum threshold

estimated from the template image will be used. If the difference

between the template image and the matching image is large, it

may cause the matching to fail. In this case, you should set the

threshold yourself, such as setting it to 0.

accuracy: matching accuracy, 0-pixel accuracy, 1-

interpolation accuracy, 2-least squares fitting accuracy, 3-

multiple iterations least squares fitting accuracy. Accuracy 1

can meet most applications, 2 or 3 are used in occasions with

higher accuracy requirements, but it will also be more time-

consuming.

speed: matching speed 0-10, the bigger the speed, the

faster, but may lose the target, when it is > 10, take 10

polar: matching polarity

polar Polarity Description

0 + All contour points’ light and dark changes

of the matching target and the template are

consistent.

1 ± Both + and - are OK, and all contour points’

light and dark changes of the matching

target and the template are consistent or

inverse.

2 Any All contour points’ light and dark changes

of the matching target and the template are

consistent or inverse.

deform: deformation size, relative to the template, it allows

a slight deformation of the target contour, 0 - does not support

deformation. 1 - support slight deformation, but it is more time-

consuming, and can be combined with the matching threshold

to remove some noise interference to increase the speed.

boundary: boundary mode, the extent to which the target

contour exceeds the image boundary, 0-not exceeded, 1-a small

213

amount exceeded, 2-moderate exceeded, 3-a large amount

exceeded, 4-completely exceeded, and the matching time

increases in sequence. When using the border, it needs to be

used with the system parameter "ShapeOnBorder". The border

mode will only work when this parameter is set to 1. Please set

this value according to the actual situation.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod,img,re,matchImg,rlts

ZV_READIMAGE(img,"model.jpg",0)

'read the image in the original image format

ZV_READIMAGE(matchImg,"1.png",0)

'read the image in the original image format

ZV_MCCCREATESHAPE(img,model,re,-180,360,0,0,0,0)

'create template

ZV_REGENRECT(re, 200, 0, 400, 400)

ZV_MCSHAPEFINDRE(mod, matchImg, re, rlts, 90, 1, 0.6, -1, 3, 9,

0) ‘template matching

Related Instruction ZV_MCCREATESHAPE,

6.1.6. ZV_MCFINDSHAPERESTATE – Match Supported

Region & Output Contour State

Type Shape template matching

Description
Use single-shape template to find and match in image “img”,

and output matching state of template contour point.

214

Grammar

ZV_MCFINDSHAPERESTATE (model, img, re, matchs, stat,

minScore [,nums=0, maxOverlap=0.5, minThresh=-1,

accuracy=1, speed=9, polar=0, deform=0, boundary=4])

model: ZVOBJECT type, shape template

img: ZVOBJECT type, the search image to be matched, 8U

single channel, size must be bigger than template image

re: ZVOBJECT type, valid region of specified matching

image

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 5 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

stats: ZVOBJECT type, the matching status of each point of

the template contour point, m rows n columns image type, one

template contour per row, and the matching status of each

contour point is stored sequentially on the row, that is, for a

certain contour point, the matching score is ≥ the set score, it is

1 (matching is successful), when it is < the matching score, it is

0 (matching fails, if it is empty, the contour point matching

status will not be output, if it is not empty, the contour point

matching status will be output, this output parameter is

combined with the drawing template command

ZV_DRASHAPEMATCH, then matching success points and

failure points can be drawn in different colors.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, output all

targets with target scores from high to low.

maxOverlap: the maximum overlap rate. Normal range is [0,

1], 0 – not overlap, that is, objects that are not overlapped are

only found, 1 – overlap, that is, objects that are close are found.

The overlap ratio indicates the allowed overlap ratio of the

215

target. The overlap rate is calculated by dividing the overlap area

of the minimum external moment of the target contour feature

by the area of the minimum external moment. When the

overlapping part of the matching results exceeds, only the best

result will be kept. It is mainly used to remove overlapping target

objects. When there is only one target in the search map, the

parameter can also be set smaller, which will speed up the

matching speed but not obvious.

minThresh: the minimum edge threshold of the target

contour. When minThresh is set to -1, the minimum threshold

estimated from the template image will be used. If the difference

between the template image and the matching image is large, it

may cause the matching to fail. In this case, you should set the

threshold yourself, such as setting it to 0.

accuracy: matching accuracy, 0-pixel accuracy, 1-

interpolation accuracy, 2-least squares fitting accuracy, 3-

multiple iterations least squares fitting accuracy. Accuracy 1

can meet most applications, 2 or 3 are used in occasions with

higher accuracy requirements, but it will also be more time-

consuming.

speed: matching speed 0-10, the bigger the speed, the

faster, but may lose the target, when it is > 10, take 10

polar: matching polarity

polar Polarity Description

0 + All contour points’ light and dark changes

of the matching target and the template are

consistent.

1 ± Both + and - are OK, and all contour points’

light and dark changes of the matching

target and the template are consistent or

inverse.

2 Any All contour points’ light and dark changes

of the matching target and the template are

consistent or inverse.

deform: deformation size, relative to the template, it allows

216

a slight deformation of the target contour, 0 - does not support

deformation. 1 - support slight deformation, but it is more time-

consuming, and can be combined with the matching threshold

to remove some noise interference to increase the speed.

boundary: boundary mode, the extent to which the target

contour exceeds the image boundary, 0-not exceeded, 1-a small

amount exceeded, 2-moderate exceeded, 3-a large amount

exceeded, 4-completely exceeded, and the matching time

increases in sequence. When using the border, it needs to be

used with the system parameter "ShapeOnBorder". The border

mode will only work when this parameter is set to 1. Please set

this value according to the actual situation.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Related Instruction ZV_MCCREATESHAPE,

6.1.7. ZV_MCFINDSHAPES – Multiple Template Matching

Type Shape template matching

Description
Use shape template list to match multiple template in image

“img”.

Grammar

ZV_MCFINDSHAPES (models, param, img, matchs, [minScore=0,

nums=0])

models: ZVOBJECT type, shape template list

param: ZVOBJECT type, parameter matrix, it can be empty,

the number of rows is 1 or equal to the mods list length, the

number of columns is less than or equal to 9, each column is the

minimum score, quantity, maximum overlap rate, minimum

threshold, accuracy, speed, polarity, deformation, boundary. If

the number of columns is insufficient, the corresponding

column will take the default value. If it is empty or the number of

rows is 0, all will take the default value. If the number of rows is

1, all templates will share parameters. Otherwise, the number of

rows must be equal to the length of the mods list, and the

217

template uses corresponding row parameters.

img: ZVOBJECT type, the search image to be matched, 8U

single channel, size must be bigger than template image

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 6 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target. When >0, it is

for all matching targets, when = 0, “score” parameter in param is

used.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, when num is

0, the quantity parameter in param is used. The targets matched

by each template are processed according to the corresponding

quantity parameter. All retained targets are output in descending

order of scores.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod,img,re,matchImg,rlts,modlist,param

ZV_READIMAGE(img, "model1.jpg", 0)

'read the image in the original image format

ZV_READIMAGE(matchImg, "1.png", 0)

ZV_MCCREATESHAPE(img,mod,re,-180,360,0,0,0,0)

'create template

ZV_LISTINSERT(mod,modlist,0)

ZV_READIMAGE(img, "model2.jpg", 0)

ZV_MCCREATESHAPE(img,mod,re,-180,360,0,0,0,0)

'create template

ZV_LISTINSERT(mod,modlist,1)

ZV_MATGENCONST(param, 2, 6, 0)

’generate parameter matrix

TABLE(0, 60, 0, 0, 1, 1, 9)

218

ZV_MATSETROW(param, 0, 6, 0)

ZV_MATSETROW(param, 1, 6, 0)

ZV_MCSHAPEFINDS(mod,param,matchImg,rlts,90,0)

 ‘template matching

Related Instruction ZV_MCCREATESHAPE,

6.1.8. ZV_MCFINDSHAPESSTATE – Multi-Template

Matching & Contour State Outputting

Type Shape template matching

Description
Use shape template list to match multiple template in image

“img”, and output matching state of template contour point.

Grammar

ZV_MCFINDSHAPESSTATE (models, param, img, matchs, stat,

[minScore=0, nums=0])

models: ZVOBJECT type, shape template list

param: ZVOBJECT type, parameter matrix, it can be empty,

the number of rows is 1 or equal to the mods list length, the

number of columns is less than or equal to 9, each column is the

minimum score, quantity, maximum overlap rate, minimum

threshold, accuracy, speed, polarity, deformation, boundary. If

the number of columns is insufficient, the corresponding

column will take the default value. If it is empty or the number of

rows is 0, all will take the default value. If the number of rows is

1, all templates will share parameters. Otherwise, the number of

rows must be equal to the length of the mods list, and the

template uses corresponding row parameters.

img: ZVOBJECT type, the search image to be matched, 8U

single channel, size must be bigger than template image

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 6 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

stats: ZVOBJECT type, the matching status of each point of

the template contour point, m rows n columns image type, m is

219

the longest template contour, one template contour per row, and

the matching status of each contour point is stored sequentially

on the row, that is, for a certain contour point, the matching

score is ≥ the set score, it is 1 (matching is successful), when it

is < the matching score, it is 0 (matching fails, if it is empty, the

contour point matching status will not be output, if it is not

empty, the contour point matching status will be output, this

output parameter is combined with the drawing template

command ZV_DRASHAPEMATCH, then matching success

points and failure points can be drawn in different colors.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target. When >0, it is

for all matching targets, when = 0, “score” parameter in param is

used.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, when num is

0, the quantity parameter in param is used. The targets matched

by each template are processed according to the corresponding

quantity parameter. All retained targets are output in descending

order of scores.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Related Instruction ZV_MCCREATESHAPE,

6.1.9. ZV_MCFINDSHAPESRE – Multiple Templates Match

Supported Region

Type Shape template matching

Description
Use shape template list to match multiple template in image

“img”.

220

Grammar

ZV_MCFINDSHAPESER (models, param, img, matchs,

[minScore=0, nums=0])

models: ZVOBJECT type, shape template list

param: ZVOBJECT type, parameter matrix, it can be empty,

the number of rows is 1 or equal to the mods list length, the

number of columns is less than or equal to 9, each column is the

minimum score, quantity, maximum overlap rate, minimum

threshold, accuracy, speed, polarity, deformation, boundary. If

the number of columns is insufficient, the corresponding

column will take the default value. If it is empty or the number of

rows is 0, all will take the default value. If the number of rows is

1, all templates will share parameters. Otherwise, the number of

rows must be equal to the length of the mods list, and the

template uses corresponding row parameters.

img: ZVOBJECT type, the search image to be matched, 8U

single channel, size must be bigger than template image

re: ZVOBJECT type, valid region of specified matching

image

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 6 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target. When >0, it is

for all matching targets, when = 0, “score” parameter in param is

used.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, when num is

0, the quantity parameter in param is used. The targets matched

by each template are processed according to the corresponding

quantity parameter. All retained targets are output in descending

order of scores.

Controller It is valid in controllers that support ZV function or they belong

221

to 5XX series or above.

Example

ZVOBJECT mod,img,re,matchImg,rlts,modlist,param

ZV_READIMAGE(img, "model1.jpg", 0)

'read the image in the original image format

ZV_READIMAGE(matchImg, "1.png", 0)

ZV_MCCREATESHAPE(img,mod,re,-180,360,0,0,0,0)

'create template

ZV_LISTINSERT(mod,modlist,0)

ZV_READIMAGE(img, "model2.jpg", 0)

ZV_MCCREATESHAPE(img,mod,re,-180,360,0,0,0,0)

'create template

ZV_LISTINSERT(mod,modlist,1)

ZV_MATGENCONST(param, 2, 6, 0)

’generate parameter matrix

TABLE(0, 60, 0, 0, 1, 1, 9)

ZV_MATSETROW(param, 0, 6, 0)

ZV_MATSETROW(param, 1, 6, 0)

ZV_REGENFULLIMG (matchImg, re)

ZV_MCSHAPEFINDSRE(mod,param,matchImg,re,rlts,90,0)

 ‘template matching

Related Instruction ZV_MCCREATESHAPE,

6.1.10. ZV_MCFINDSHAPESRESTATE – Match Multi-

Template Supported Region & Output Contour State

Type Shape template matching

Description
Use shape template list to match multiple template in image

“img”, and output matching state of template contour point.

Grammar

ZV_MCFINDSHAPESRESTATE (models, param, img, re, matchs,

stat, [minScore=0, nums=0])

models: ZVOBJECT type, shape template list

param: ZVOBJECT type, parameter matrix, it can be empty,

the number of rows is 1 or equal to the mods list length, the

number of columns is less than or equal to 9, each column is the

222

minimum score, quantity, maximum overlap rate, minimum

threshold, accuracy, speed, polarity, deformation, boundary. If

the number of columns is insufficient, the corresponding

column will take the default value. If it is empty or the number of

rows is 0, all will take the default value. If the number of rows is

1, all templates will share parameters. Otherwise, the number of

rows must be equal to the length of the mods list, and the

template uses corresponding row parameters.

img: ZVOBJECT type, the search image to be matched, 8U

single channel, size must be bigger than template image

re: ZVOBJECT type, valid region of specified matching

image

matchs: ZVOBJECT type, matching result, matrix type, n

rows and 6 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

stats: ZVOBJECT type, the matching status of each point of

the template contour point, m rows n columns image type, m is

the longest template contour, one template contour per row, and

the matching status of each contour point is stored sequentially

on the row, that is, for a certain contour point, the matching

score is ≥ the set score, it is 1 (matching is successful), when it

is < the matching score, it is 0 (matching fails, if it is empty, the

contour point matching status will not be output, if it is not

empty, the contour point matching status will be output, this

output parameter is combined with the drawing template

command ZV_DRASHAPEMATCH, then matching success

points and failure points can be drawn in different colors.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target. When >0, it is

for all matching targets, when = 0, “score” parameter in param is

used.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

223

with target scores from high to low, when num is 0, when num is

0, the quantity parameter in param is used. The targets matched

by each template are processed according to the corresponding

quantity parameter. All retained targets are output in descending

order of scores.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Related Instruction ZV_MCCREATESHAPE,

6.1.11. ZV_MCSHAPECONTLIST – Get Template Contour

Type Shape template creating

Description It is used to get template contour.

Grammar

ZV_MCSHAPECONTLIST(model,contlist)

model: ZVOBJECT type, source shape template

contlist: ZVOBJECT type, template contour list

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

VOBJECT img, re, model, contlist

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MCCCREATESHAPE(img,re,model,-180,360,0,0,0,0)

'create the template

ZV_MCSHAPECONTLIST(model,contlist)

'get template contour

6.1.12. ZV_SHAPECREATE – Use Image to Create

Template

Type Shape template creating

Description

Create a shape-matching template through a template image.

And the reference position of the created template is the integer

part of half the size of the template image, that is, integer

224

division (ImageWidth/2, ImageHeight/2)

Grammar

ZV_SHAPECREATE(img,model,angleStart,angleEnd,scaleMin,

scaleMax,thresh[,levelNum=0,ptReduce=0,angleStep=0,scaleSt

ep=0,m inContLen=20])

img: ZVOBJECT type, image for making templates, 8U

single-channel.

model: ZVOBJECT type, created template, output parameter

angleStart: starting angle, determined by the image

coordinate system, range [-360,360), if it exceeds the range, it

will be automatically normalized to this range.

angleEnd: angle range, range [-360,360). angleEnd must be

≥ to angleStart, otherwise an error will be reported, and the

difference must be ≤ to 360, if it exceeds, angleEnd value will be

cut out. After the template is created, targets within the starting

and ending angles all can be matched.

scaleMin: minimum ratio of matching zoom, range [0.5, 2.0]

scaleMax: maximum ratio of matching zoom, range [0.5,

2.0], ≥ scale_min, after creating the template, targets within the

minimum and maximum scaling ranges can be matched.

thresh: contrast threshold for extracting edge contours--

absolute threshold, range [0,255], when it is 0, an appropriate

threshold will be selected internally, the greater the contrast, the

stronger the strength of the extracted edge contour, this

parameter can control the extraction of strong edges or weak

edge, the smaller the threshold, the more weak-edges are

extracted, and it may bring some noise at the same time.

levelNum: the number of pyramid layers, range [0, infinity),

the smaller the number of layers, the more time-consuming the

matching, if it is 0 or the number of layers is too large, it will

automatically select the appropriate number of layers, it is

recommended to be 0

ptReduce: optimize to reduce the number of template

points. If you set the greedy degree when searching for

templates, it needs to set it lower, 0-no reduction, 1-slight

reduction, 2-moderate reduction, 3-large reduction

225

angleStep: angle step size, range [0,12]. The smaller the

step size, the better the accuracy but the more time-consuming

the matching. The larger the step size, the worse the accuracy

but the less time-consuming the matching. It is unreasonable to

set the step size too small or as when 0, an appropriate step size

will be automatically selected internally, and 0 is recommended.

Please attention since the angle needs to exceed 0, the angle

step obtained by using the command ZV_SHAPEPARAM will be

slightly different from angleStep.

scaleStep: scaling step size, [0, scaleMax - scaleMin], the

smaller the step size, the better the accuracy but the more time-

consuming the matching, the larger the step size the worse the

accuracy but the less time-consuming the matching, the step

size is too small or when it is 0, an appropriate step size will be

automatically selected internally, and it is recommended to be

0. Please attention since the zoom needs to exceed 1, the zoom

step obtained by using the command ZV_SHAPEDEFPARAM will

be slightly different from the scaleStep.

minContLen: minimum contour length, contours smaller

than this length will not be extracted, this parameter can control

the deletion of some short contours.

Notes:

When creating a template, a target with a clear outline and

unique feature is usually selected as a template, and the

features should not be symmetric. The amount of template

feature data is usually related to the template size and template

parameters, and its data amount is proportional to the size of

the template, the complexity of the template outline, the range

of rotation angle, and the zoom range. The larger the template,

the smaller the angle step used, and the larger the amount of

feature data in the same angle range, so the matching time is

more time-consuming.

Creating a template and matching have a timeout

mechanism, the default are 5000ms, when creating a template

226

timeout, it can reduce the amount of template feature data by

adjusting the template parameters appropriately (such as

reducing the zoom range or using the outline point reduction

parameter ptReduce, the default value of this parameter If it is 0,

the contour points will not be simplified, and too serious

reduction may affect the matching accuracy), or manually set

the timeout period, such as ZV_SETSYSDBL

("ShapeCreateTimeout", 5000), ZV_SETSYSDBL

("ShapeFindTimeout", 5000).

Creating a template also has a memory protection

mechanism. When using an overly large template image to

create a template with scaling, the memory occupied reaches

the protection threshold. At this time, a memory error is reported

and the template creation fails. It can reduce the amount of data

by adjusting the template parameters, such as using the

ptReduce parameter streamlines some points, or the threshold

thresh is set to a larger point to only extract some obvious

contour features.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, model

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,model,0,360,1,1,50,0,0,0,0)

'create a template

Related Instruction ZV_SHAPEFIND

6.1.13. ZV_SHAPECREATERE – Use Region to Create

Template

Type Shape template creating

Description

Use the template image “img” and specify the valid area “re” of

the template image to create a shape matching template. This

is mainly used when there is a lot of noise in the template image,

227

creating a template by specifying some parts of the template

image to be valid through the re area instead of the entire

template image. create. For this method, it can remove the

noisier part of the template image by performing some set

operations or morphological operations on the re area, thereby

obtaining a more robust template feature. The reference

position of the created template is the integer part of half the

size of the template image, that is, integer division

(ImageWidth/2, ImageHeight/2)

Grammar

ZV_SHAPECREATERE (img, re, model, angleStart, angleEnd,

scaleMin, scaleMax, thresh[,levelNum=0, ptReduce=0,

angleStep=0, scaleStep=0, m inContLen])

img: ZVOBJECT type, image for making templates, 8U

single-channel.

re: ZVOBJECT type, specify the effective area of the

template image, and the part corresponding to re in the template

image will be used to create the template. re is an area based on

run-length encoding, and its set operation is more convenient to

remove invalid parts and retain valid parts to create templates.

Usually, for template images with more noise or inconspicuous

contour features, re is used to remove weak features in the

template image and retain strong features. If re is empty, the

entire template is the valid area by default.

model: ZVOBJECT type, created template, output parameter

angleStart: starting angle, determined by the image

coordinate system, range [-360,360), if it exceeds the range, it

will be automatically normalized to this range.

angleEnd: angle range, range [-360,360). angleEnd must be

≥ to angleStart, otherwise an error will be reported, and the

difference must be ≤ to 360, if it exceeds, angleEnd value will be

cut out. After the template is created, targets within the starting

and ending angles all can be matched.

scaleMin: minimum ratio of matching zoom, range [0.5, 2.0]

scaleMax: maximum ratio of matching zoom, range [0.5,

2.0], ≥ scale_min, after creating the template, targets within the

228

minimum and maximum scaling ranges can be matched.

thresh: contrast threshold for extracting edge contours--

absolute threshold, range [0,255], when it is 0, an appropriate

threshold will be selected internally, the greater the contrast, the

stronger the strength of the extracted edge contour, this

parameter can control the extraction of strong edges or weak

edge, the smaller the threshold, the more weak-edges are

extracted, and it may bring some noise at the same time.

levelNum: the number of pyramid layers, range [0, infinity),

the smaller the number of layers, the more time-consuming the

matching, if it is 0 or the number of layers is too large, it will

automatically select the appropriate number of layers, it is

recommended to be 0

ptReduce: optimize to reduce the number of template

points. If you set the greedy degree when searching for

templates, it needs to set it lower, 0-no reduction, 1-slight

reduction, 2-moderate reduction, 3-large reduction

angleStep: angle step size, range [0,12]. The smaller the

step size, the better the accuracy but the more time-consuming

the matching. The larger the step size, the worse the accuracy

but the less time-consuming the matching. It is unreasonable to

set the step size too small or as when 0, an appropriate step size

will be automatically selected internally, and 0 is recommended.

Please attention since the angle needs to exceed 0, the angle

step obtained by using the command ZV_SHAPEPARAM will be

slightly different from angleStep.

scaleStep: scaling step size, [0, scaleMax - scaleMin], the

smaller the step size, the better the accuracy but the more time-

consuming the matching, the larger the step size the worse the

accuracy but the less time-consuming the matching, the step

size is too small or when it is 0, an appropriate step size will be

automatically selected internally, and it is recommended to be

0. Please attention since the zoom needs to exceed 1, the zoom

step obtained by using the command ZV_SHAPEDEFPARAM will

be slightly different from the scaleStep.

229

minContLen: minimum contour length, contours smaller

than this length will not be extracted, this parameter can control

the deletion of some short contours.

Notes:

When creating a template, a target with a clear outline and

unique feature is usually selected as a template, and the

features should not be symmetric. The amount of template

feature data is usually related to the template size and template

parameters, and its data amount is proportional to the size of

the template, the complexity of the template outline, the range

of rotation angle, and the zoom range. The larger the template,

the smaller the angle step used, and the larger the amount of

feature data in the same angle range, so the matching time is

more time-consuming.

Creating a template and matching have a timeout

mechanism, the default are 5000ms, when creating a template

timeout, it can reduce the amount of template feature data by

adjusting the template parameters appropriately (such as

reducing the zoom range or using the outline point reduction

parameter ptReduce, the default value of this parameter If it is 0,

the contour points will not be simplified, and too serious

reduction may affect the matching accuracy), or manually set

the timeout period, such as ZV_SETSYSDBL

("ShapeCreateTimeout", 5000), ZV_SETSYSDBL

("ShapeFindTimeout", 5000).

Creating a template also has a memory protection

mechanism. When using an overly large template image to

create a template with scaling, the memory occupied reaches

the protection threshold. At this time, a memory error is reported

and the template creation fails. It can reduce the amount of data

by adjusting the template parameters, such as using the

ptReduce parameter streamlines some points, or the threshold

thresh is set to a larger point to only extract some obvious

contour features.

230

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

Example 1: when the re region is empty

ZVOBJECT img ‘template image

ZVOBJECT model 'template

ZVOBJECT re ’specify the valid area of the template image.

When only declaring “re” not to be processed,

it is equivalent to re being empty, that is, the

entire template image is valid, and the

function is the same as ZV_SHAPECREATE

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original format

ZV_SHAPECREATERE(img, re, model, angleStart, angleEnd,

scaleMin, scale Max, thresh, levelNum, ptReduce, angleStep,

scaleStep) 'create template

Example 2: when the re region is not empty

ZVOBJECT img ‘template image

ZVOBJECT model 'template

ZVOBJECT re ’specify the valid area of the template image.

It is necessary to generate re, that is, the part

of the template image corresponding to re is

used to create the template.

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original format

ZV_REGENRECT(re,0,0,w,h)

‘specify an area on the template image for

creating the template, w and h are the width

and height of the template image respectively

ZV_SHAPECREATERE(img,re,model,0,360,1,1,120,0,0,0,0)

'create template

Related Instruction ZV_SHAPEFIND

231

6.1.14. ZV_SHAPEFIND – Matching

Type Shape template creating

Description Use single-shape template to find and match in image “img”.

Grammar

ZV_SHAPEFIND(model, img, matchs, minScore [,nums=0,

minDist=0, minThre sh=-1, accuracy=3, speed=9, polar=0])

model: ZVOBJECT type, shape template

img: ZVOBJECT type, the search image to be matched, it

cannot be 1:1 proportional to the template image, 8U single

channel

matches: ZVOBJECT type, matching result, matrix type, n

rows and 5 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, output all

targets with target scores from high to low.

minDist: minimum matching distance, indicating the

minimum distance allowed between two targets. When minDist

is ≤ 0, the appropriate distance will be selected internally. When

minDist is ≤ the distance between the two targets, the two

targets will be matched. When minDist is > the distance between

the two targets, the low-scoring target will be deleted and only

the high-scoring target will be left and the value target is

matched.

minThresh: the lowest edge threshold of the target contour,

when minThresh is < zero, the threshold when creating the

template will be used

accuracy: matching accuracy, 0-pixel accuracy, 1-

interpolation accuracy, 2-least squares fitting accuracy, 3-

multiple iterations least squares fitting accuracy. Accuracy 1

232

can meet most applications, 2 or 3 are used in occasions with

higher accuracy requirements, but it will also be more time-

consuming.

speed: matching speed 0-10, the bigger the speed, the

faster, but may lose the target, when it is > 10, take 10

polar: matching polarity

polar Polarity Description

0 + All contour points’ light and dark changes

of the matching target and the template are

consistent.

1 ± Both + and - are OK, and all contour points’

light and dark changes of the matching

target and the template are consistent or

inverse.

2 Any All contour points’ light and dark changes

of the matching target and the template are

consistent or inverse.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod,img,matchImg,clrImg,rlts,

ZVOBJECT matRigid,modContList,dstContList

ZV_READIMAGE(img, "model.jpg", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,mod,0,360,1,1,50,0,0,0,0)

'create template

ZV_SHAPECONTOURS(mod, modContList, 0)

'get template outline

ZV_READIMAGE(matchImg, "1.png", 0)

'read the image in the original format

233

ZV_SHAPEFIND(mod,matchImg,rlts,90,1,0,-1,3,9,0)

'template matching

ZV_MATGETROW(rlts,0,5,0)

'obtain the first row of the matching result matrix,

which are: matching score, x coordinate, y coordinate,

rotation angle “angle”, and scaling “scale”

ZV_GETRIGIDVECTOR (matRigid, 0, 0, 0, TABLE(1), TABLE(2),

TABLE(3)) 'calculate rigid transformation matrix

ZV_CONTAFFINE (modContListt, matRigid, dstContList)

'contour affine transformation

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

ZV_CONTLIST (clrImg, dstContList, ZV_COLOR(0,255,0),0)

'draw the outline

Related Instruction ZV_SHAPECREATE, ZV_SHAPECREATERE

6.1.15. ZV_SHAPEFINDST – Match & Output Contour

State

Type Shape template creating

Description
Use single-shape template to find and match in image “img”,

also output the matching state of template contour point.

Grammar

ZV_SHAPEFINDST (model, img, matchs, stats, minScore

[,nums=0, minDist=0 , minThresh=-1, accuracy=3, speed=9,

polar=0])

model: ZVOBJECT type, shape template

img: ZVOBJECT type, the search image to be matched, it

cannot be 1:1 proportional to the template image, 8U single

channel

matches: ZVOBJECT type, matching result, matrix type, n

rows and 5 columns, each row has a matching target, and the

columns are the matching score “score”, x coordinate, y

coordinate, rotation angle “angle”, scaling “scale”.

stats: ZVOBJECT type, the matching status of each point of

234

the template contour point, m x n image type, one template

contour per row, and the matching status of each contour point

is stored sequentially on the row, that is, for a certain contour

point, the matching score is ≥ the set score, it is 1 (matching is

successful), when it is < the matching score, it is 0 (matching

fails, if it is empty, the contour point matching status will not be

output, if it is not empty, the contour point matching status will

be output, this output parameter is combined with the drawing

template command ZV_DRASHAPEMATCH, then matching

success points and failure points can be drawn in different

colors.

minScore: the minimum matching score, (0,100], the higher

the score, the more accurate the matching target.

nums: the maximum number of matches, [0, infinity), when

num is > the real target, output all targets with target scores from

high to low, when num is < the real target, output num targets

with target scores from high to low, when num is 0, output all

targets with target scores from high to low.

minDist: the minimum distance, when it is 0, the distance is

automatically selected, indicating the allowable separation

distance of the matching results. When the matching result

distance is less than the minimum distance, only the best result

will be kept. It is mainly used to remove overlapping target

objects and is recommended to be 0 when matching non-

overlapping targets. When there is only one target in the search

graph, it can also set the minimum distance larger, which will

speed up the matching but not obvious.

minThresh: the lowest edge threshold of the target contour,

when minThresh is < 0, the threshold when creating the template

will be used

accuracy: matching accuracy, 0-pixel accuracy, 1-

interpolation accuracy, 2-least squares fitting accuracy, 3-

multiple iterations least squares fitting accuracy. Accuracy 1

can meet most applications, 2 or 3 are used in occasions with

higher accuracy requirements, but it will also be more time-

235

consuming.

speed: matching speed 0-10, the bigger the speed, the

faster, but may lose the target, when it is > 10, take 10

polar: matching polarity

polar Polarity Description

0 + All contour points’ light and dark changes

of the matching target and the template are

consistent.

1 ± Both + and - are OK, and all contour points’

light and dark changes of the matching

target and the template are consistent or

inverse.

2 Any All contour points’ light and dark changes

of the matching target and the template are

consistent or inverse.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod, img, matchImg, clrImg, rlts, stats

ZV_READIMAGE(img, "model.jpg", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,model,0,360,1,1,50,0,0,0,0)

'create template

ZV_READIMAGE(matchImg, "1.png", 0)

236

'read the image in the original image format

ZV_SHAPEFINDST (model, matchImg, rlts, stats, 90, 1, 0, -1, 3, 9,

0) 'template matching

ZV_GRAYTORGB (matchImg, clrImg)

'convert grayscale image to RGB image

ZV_DRASHAPEMATCH (clrImg, model, rlts, stats,

ZV_COLOR(0,255,0), ZV_CO LOR(255,0,0))

'draw the template on the color image, and the contour

points that match successfully are drawn in green, and

the contour points that fail to match are drawn red

Related Instruction
ZV_SHAPECREATE, ZV_SHAPECREATERE,

ZV_DRASHAPEMATCH

6.1.16. ZV_SHAPEFINDS – Multi-Template Matching

Type Shape template creating

Description Use multiple shape templates to find and match in image “img”.

Grammar

ZV_SHAPEFINDS (modelList, param, img, matchs [,numMatchs

= 0, minDis = 0])

modelList: ZVOBJECT type, shape template list

param: ZVOBJECT type, matching parameter, matrix type, 1

row or n rows, when it is row 1, all templates share the matching

parameters of this row, when it is n rows, the number of rows of

the matrix must be equal to the length of the template list,

indicating that each row corresponds to matching parameter of

one template, and the data in each row are minScore, nums,

minDist, minThresh, accuracy, speed, and polar. For parameter

meanings, please refer to the single template matching

parameters.

img: ZV_OBJECT type, the search image to be matched, 8U

channel

matches: ZVOBJECT type, matching result, matrix type,

output parameters, matrix with n rows and 6 columns, one

matching result per row, and the data in each row are score, x, y,

237

angle, scale, modelId in turn. “modelId” represents matched

result that corresponds to id template in template list.

numMatchs: the total maximum number of matches, range

[0, infinity), when numMatchs is 0, use the parameters in param,

and output targets in ascending order of template id (if the id is

the same, score descending order), when numMatchs is > 0,

output in descending order of scores. For relationship between

snumMatchs size and real target size, please refer to single-

template matching.

minDist: minimum matching distance, indicating the

minimum distance allowed between two targets. When minDist

is ≤ 0, use the parameters in param. For the target corresponding

to the template, the meaning refers to single template matching.

When minDist is > 0, for all matching targets.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mod, mod1, mod2, mod3, modList, img1, img2, img3,

rlts

ZVOBJECT param, matRigid, modContList, dstContList,

matchImg, clrImg

ZV_READIMAGE(img1, "1.jpg", 0)

'read the image in the original image format

ZV_READIMAGE(img2, "2.jpg", 0)

ZV_READIMAGE(img3, "3.jpg", 0)

ZV_SHAPECREATE(img1,mod1,0,360,1,1,50,0,0,0,0)

'create template

238

ZV_SHAPECREATE(img2,mod2,0,360,1,1,90,0,0,0,0)

ZV_SHAPECREATE(img3,mod3,0,360,1,1,77,0,0,0,0)

ZV_CLEAR(modList) 'clear model_list

ZV_LISTINSERT(mod1, modList, -1)

'insert the template into the template list

ZV_LISTINSERT(mod2, modList, -1)

ZV_LISTINSERT(mod3, modList, -1)

ZV_MATGENCONST(param,3,7,0)

'construct a matrix with 3 rows and 7 columns, and set

the matching parameters

TABLE(0,90,1,0,-1,3,9,0)

ZV_MATSETROW(param,0,7,0)

TABLE(0,90,1,0,-1,3,9,0)

ZV_MATSETROW(param,1,7,0)

TABLE(0,90,1,0,-1,3,9,0)

ZV_MATSETROW(param,2,7,0)

ZV_READIMAGE(matchImg, "test.png", 0)

'read the image in the original image format

ZV_SHAPEFINDS(modList,param,matchImg,rlts,0,0)

'multiple target matching

ZV_LISTGET(modList,mod,TABLE(5))

ZV_SHAPECONTOURS(mod, modContList, 0)

'get template contour

ZV_GETRIGIDVECTOR(matRigid,0,0,0,TABLE(1),TABLE(2),TABLE

(3)) 'calculate rigid transformation matrix

ZV_CONTAFFINE(modContListt, matRigid,dstContList)

'contour affine transformation

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

ZV_CONTLIST(clrImg,dsContList,ZV_COLOR(0,255,0),0)

'draw the contour

Related Instruction ZV_SHAPECREATE, ZV_SHAPECREATERE

239

6.1.17. ZV_SHAPEFINDSST – Multi-Template Matching

& Contour State Outputting

Type Shape template creating

Description
Use multiple shape templates to find and match in image “img”,

also output the matching state of template contour point.

Grammar

ZV_SHAPEFINDSST (modelList, param, img, matchs, stats,

[,numMatchs=0,mi nDis=0])

modelList: ZVOBJECT type, shape template list

param: ZVOBJECT type, matching parameter, matrix type, 1

row or n rows, when it is row 1, all templates share the matching

parameters of this row, when it is n rows, the number of rows of

the matrix must be equal to the length of the template list,

indicating that each row corresponds to matching parameter of

one template, and the data in each row are minScore, nums,

minDist, minThresh, accuracy, speed, and polar. For parameter

meanings, please refer to the single template matching

parameters.

img: ZVOBJECT type, the search image to be matched, 8U

single channel

matches: ZVOBJECT type, matching result, matrix type, n

rows and 6 columns, each row has a matching target, and the

data in each row are score, x, y, angle, scale, modelId in turn.

“modelId” represents matched result that corresponds to id

template in template list.

stats: ZVOBJECT type, the matching status of each point of

the template contour point, m x n image type, one template

contour per row, and the matching status of each contour point

is stored sequentially on the row, that is, for a certain contour

point, the matching score is ≥ the set score, it is 1 (matching is

successful), when it is < the matching score, it is 0 (matching

fails, if it is empty, the contour point matching status will not be

output, if it is not empty, the contour point matching status will

be output, this output parameter is combined with the drawing

240

template command ZV_DRASHAPEMATCH, then matching

success points and failure points can be drawn in different

colors.

numMatchs: the total maximum number of matches, range

[0, infinity), when numMatchs is 0, use the parameters in param,

and output targets in ascending order of template id (if the id is

the same, score descending order), when numMatchs is > 0,

output in descending order of scores. For relationship between

snumMatchs size and real target size, please refer to single-

template matching.

minDist: minimum matching distance, indicating the

minimum distance allowed between two targets. When minDist

is ≤ 0, use the parameters in param. For the target corresponding

to the template, the meaning refers to single template matching.

When minDist is > 0, for all matching targets.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM rows

ZVOBJECT mod, mod1, mod2, mod3, modList, img1, img2, img3,

rlts, subRlts

ZVOBJECT param, matRigid, modContList, dstContList,

matchImg, clrImg

ZV_READIMAGE(img1, "1.jpg", 0)

'read the image in the original format

ZV_READIMAGE(img2, "2.jpg", 0)

ZV_READIMAGE(img3, "3.jpg", 0)

ZV_SHAPECREATE(img1,mod1,0,360,1,1,50,0,0,0,0)

241

'create template

ZV_SHAPECREATE(img2,mod2,0,360,1,1,90,0,0,0,0)

ZV_SHAPECREATE(img3,mod3,0,360,1,1,77,0,0,0,0)

ZV_CLEAR(modList) 'clear model_list

ZV_LISTINSERT(mod1, modList, -1)

'insert the template into the template list

ZV_LISTINSERT(mod2, modList, -1)

ZV_LISTINSERT(mod3, modList, -1)

ZV_MATGENCONST(param,3,7,0)'

construct a matrix with 3 rows and 7 columns, and set

the matching parameter

TABLE(0,90,1,0,-1,3,9,0)

ZV_MATSETROW(param,0,7,0)

TABLE(0,90,1,0,-1,3,9,0)

ZV_MATSETROW(param,1,7,0)

TABLE(0,90,1,0,-1,3,9,0)

ZV_MATSETROW(param,2,7,0)

ZV_READIMAGE(matchImg, "test.png",0)

'read the image in the original image format

ZV_SHAPEFINDSST(modList,param,matchImg,rlts,stats,0,0)

'multiple targets matching

ZV_MATGETROW(rlts,0,6,0)

'obtain first row of matched result matrix

ZV_LISTGET(modList,model,TABLE(5))

 ‘get first row result matrix corresponding template

rows = ZV_MATROWS(rlts)

'get the number of rows of the result matrix

ZV_MATGETSUB(rlts,subRlts,0,0,5,rows)

'intercept result matrix

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

ZV_DRASHAPEMATCH (clrImg, modList, subRlts, stats,

ZV_COLOR (0,255,0), ZV_COLOR(255,0,0))

‘draw the template list on the color image, and the

contour points that match successfully are drawn in

242

green, and the contour points that fail to match are

drawn in red.

Related Instruction ZV_SHAPECREATE, ZV_SHAPECREATERE

6.1.18. ZV_SHAPECONTOURS – Get Template Contour

Type Shape template creating

Description
It is used to get the template outline on the specified layer

pyramid.

Grammar

ZV_SHAPECONTOURS(model,contlist,level)

alias: ZV_SHAPECONTLIST

model: ZVOBJECT type, source shape template

contlist: ZVOBJECT type, output parameters, template

outline list

level: pyramid layer No.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, model, contlist

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,model,0,360,1,1,50,0,0,0,0)

'create template

ZV_SHAPECONTOURS(model,contlist,0)

'get the template outline on the 0th layer pyramid

6.1.19. ZV_SHAPETEMPL – Get Template Image

Type Shape template creating

Description It is used to create shape template image.

Grammar

ZV_SHAPETEMPL(model,img)

model: ZVOBJECT type, source shape template

img: ZVOBJECT type, output parameter, image used to

create shape templates

243

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, model, dst

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,model,0,360,1,1,50,0,0,0,0)

'create template

ZV_SHAPECONTOURS(model,dst)

'obtain the image that creates shape template “model”

and save it into dst

6.1.20. ZV_SHAPEREGION – Get Template Region

Type Shape template creating

Description
It is used to obtain valid region when creating the shape

template.

Grammar

ZV_SHAPEREGION(model,re)

model: ZVOBJECT type, source shape template

re: ZVOBJECT type, output parameters, valid region when

creating shape template.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img ‘template image

ZVOBJECT model 'template

ZVOBJECT re ’specify the valid region of the template

image, and re needs to be generated, that is,

the part of the template image

corresponding to re is used to create the

template

ZVOBJECT re_dst

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENRECT(re,0,0,w,h)

‘specify an area on the template image for

244

creating the template, w and h are the width

and height of the template image

respectively

ZV_SHAPECREATERE(img,re,model,0,360,1,1,120,0,0,0,0)

'create template

ZV_SHAPEREGION(model,re_dst)

'Obtain the valid region when creating the

shape template model and store it in re

6.1.21. ZV_SHAPETEMPSIZE – Get Template Image Size

Type Shape template creating

Description
It is used to obtain the image size that is for creating shape

template.

Grammar

ZV_SHAPETEMPLSIZE(model, tabId)

model: ZVOBJECT type, source shape template

tabId: TABLE index, output parameter, the image size used

to create the template, in turn width, height

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, model

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,model,0,360,1,1,50,0,0,0,0)

'create template

ZV_SHAPETEMPLSIZE(model,0)

'get the image size of the created shape template and

stores it in TABLE(0)

6.1.22. ZV_SHAPEPARAM – Get Template Parameters

Type Shape template creating

Description It is used to obtain parameters when creating shape template.

245

Grammar

ZV_SHAPEPARAM(model,tabId)

model: ZVOBJECT type, source shape template

tabId: TABLE index, output parameters, obtained template

parameters, in order of angleStart, angleEnd, scaleMin,

scaleMax, thresh, levelNum, that is, start angle, end angle,

minimum zoom, maximum zoom, edge threshold, number of

pyramid layers

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, model

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,model,0,360,1,1,50,0,0,0,0)

'create template

ZV_SHAPEPARAM(model,0)

'save template parameters into TABLE (0)

6.1.23. ZV_SHAPEDEFPARAM – Get Template Default

Parameters

Type Shape template creating

Description It is used to obtain default parameters of shape template.

Grammar

ZV_SHAPEDEFPARAM(model,tabId)

model: ZVOBJECT type, source shape template

tabId: TABLE index, output parameters, obtained default

parameters, which are angleStep, scaleStep, minThresh,

ptReduce in order, that is, angle step, scaling step, minimum

edge threshold, and contour point simplification level

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, model

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,model,0,360,1,1,50,0,0,0,0)

246

'create template

ZV_SHAPEDEFPARAM(model,0)

'save template default parameters into TABLE (0)

6.2. NCC Matching

Based on the matching algorithm of normalized grayscale correlation coefficient, the

matching process uses a pyramid system to improve efficiency, and the origin of the

template is the center of the image.

6.2.1. ZV_NCCCREATERE – Create

Type NCC matching.

Description

Use the template image and specify the effective area re of the

template image to create a template, mainly for when there are

many noises in the template image, using the re area to specify

that some parts of the template image are valid to create a

template instead of using the entire template image. Through

“re”, the part with more noise in the template image can be

removed by performing some set operations or morphological

operations on the re area, so as to obtain a more robust template

feature.

Grammar

ZV_NCCCREATERE(img,re,model,angleStart,angleEnd[,levelNum

=0,angl eStep=0])

img: ZVOBJECT type, image for making templates, 8U

single channel

re: ZVOBJECT type, valid region selected by the template

image, based on run-length encoding

model: ZVOBJECT type, output parameters, NCC template

made

angleStart: starting value of angle matching, clockwise is +

angleEnd: ending value of angle matching, clockwise is +

levelNum; the number of pyramid layers, > 0, = 0 means

247

automatically select the number of layers

angleStep: angle step, > 0, = 0 means automatically select

the angle step

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re, model

ZV_READIMAGE(img, "model.png", 0)

'read the image in the original image format

ZV_REGENRECT2(re,422,181,290,100,50)

'specify an area on the template image used to create

the template

ZV_NCCCREATERE(img,re,model,-180,180,5,0)

'create NCC template, angle range -180 to 180, 5-layer

pyramid, angle step size is automatically selected by

the system

6.2.2. ZV_NCCFIND – Match

Type NCC matching.

Description It uses NCC template to find and match in image “img”.

Grammar

ZV_NCCFIND(model,img,matchs,minScore[,nums=0,minDist=0,

isSubpix=1, polar=0])

model: ZVOBJECT type, NCC template

img: ZVOBJECT type, search for matching target image,

cannot be 1:1 equal to the template image, 8U single channel

matches: ZVOBJECT type, matching result, matrix type, one

matching target is in each row, and the 4 columns are score, x

coordinate, y coordinate, and rotation angle.

minScore: minimum matching score, > 0, (0,100]

nums: maximum number of matches, take the first nums

results with the highest score, if it is 0, take all results

minDist: the minimum distance between two matching

results, when it is 0, automatically select distance

isSubpix: whether to interpolate with sub-pixel precision, 0-

248

no, 1-yes

polar: match polarity

polar Polarity Description

0 ± The light-dark transformation of the

template and the target are the

same.

1 Any The light-dark transformation of the

template and the target are the same

or the opposite.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, clrImg, re, model, matchImg

ZV_READIMAGE(img, "model.png", 0)

'read the image in the original format

ZV_REGENFULLIMG(img,re)

'generate the area covering the whole image

ZV_NCCCREATERE(img,re,model,-180,180,5,0)

'create ncc template

ZV_READIMAGE(match_img, "test.png", 0)

'read the image in the original image format

ZV_NCCFIND(model, matchImg, results, 80, 10, 20, 1)

'NCC match

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image into RGB image

ZV_MATINFO(results, 0)

FOR i = 0 TO TABLE(0)-1

ZV_MATGETROW(results, i, 4, 10)

ZV_MARKER(clrImg,TABLE(11),TABLE(12),0,20,ZV_COLOR(

255,0,0))

249

'matching points draw red cross marks

NEXT

6.2.3. ZV_NCCTEMPL – Get Template Image

Type NCC matching.

Description Obtain the image when creating NCC template.

Grammar

ZV_NCCTEMPL(model,img)

model: ZVOBJECT type, NCC template

img: ZVOBJECT type, output parameter, obtained image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re, model, dst

ZV_READIMAGE(img, "model.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,re)

'generate an area covering the entire image

ZV_NCCCREATERE(img,re,model,-180,180,0,0)

'create ncc template

ZV_NCCTEMPL(model,dst)

'get the image when creating the NCC template and

store it in img

Related Instruction ZV_NCCCREATERE

6.2.4. ZV_NCCREGION – Get Template Region

Type NCC matching.

Description Obtain valid region when creating NCC template.

Grammar

ZV_NCCREGION(model, re)

model: ZVOBJECT type, NCC template

re: ZVOBJECT type, output parameter, obtained region of

created template

Controller It is valid in controllers that support ZV function or they belong

250

to 5XX series or above.

Example

ZVOBJECT img, re, model, dst_re

ZV_READIMAGE(img, "model.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,re)

'generate an area covering the entire image

ZV_NCCCREATERE(img,re,model,-180,180,0,0)

'create ncc template

ZV_NCCTEMPL(model,dst_re)

'get the region when creating the NCC template and

store it in re

Related Instruction ZV_NCCCREATERE

6.2.5. ZV_NCCPARAM – Get Template Parameters

Type NCC matching.

Description Obtain parameters when creating NCC template.

Grammar

ZV_NCCREGION(model, tabId)

model: ZVOBJECT type, source NCC template

tabId: TABLE index, output parameters, obtained NCC

template parameters, in order angleStart, angleEnd, angleStep,

levelNum, that is, starting angle, ending angle, angle step, and

number of pyramid levels

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re, model

ZV_READIMAGE(img, "model.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,re)

'generate an area covering the entire image

ZV_NCCCREATERE(img,re,model,-180,180,0,0)

'create ncc template

ZV_NCCTEMPL(model,0)

'get ncc template parameters and store into TABLE (0)

251

Related Instruction ZV_NCCCREATERE

6.3. Grayscale Matching

Based on the matching of image gray value, the origin of the template is the center of the

image.

6.3.1. ZV_FASHTEMPL – Fast to Match

Type NCC matching.

Description
Get the x, y coordinates of the best matching position, an integer

value.

Grammar

ZV_FASTTEMPL(img,modImg,tabId[,method = 0])

img: ZVOBJECT type, image to be matched

modImg: ZVOBJECT type, template image

tabId: TABLE index, matching result, output parameters, x, y

coordinates in order, coordinates are integer values

Metho: matching algorithm

Method Description

0 normalized correlation coefficient

1 correlation coefficient

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT model, matchImg, clrImg

ZV_READIMAGE(model, "model.png", 0)

'read the image in the original image format

252

ZV_READIMAGE(matchImg, "test.png", 0)

'read the image in the original image format

ZV_FASTTEMPL(matchImg,model,0,0)

'use the grayscale matching method to obtain the

position of the template image in the search image, and

store the coordinate position in TABLE (0).

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

ZV_MARKER(clrImg,TABLE(0),TABLE(1),0,50,zv_color(255,0,0))

'draw cross

6.3.2. ZV_BESTTEMPL – Match Grayscale Template

Type NCC matching.

Description Get the best matching position, supporting sub-pixel accuracy.

Grammar

ZV_BESTTEMPL(img,modImg,minScore,tabId[,isSubpix=0, polar

= 0])

img: ZVOBJECT type, the image to be matched, the image is

a single-channel image

modImg: ZVOBJECT type, the template image

minScore: minimum matching score

tabId: TABLE index, matching result, output parameters, in

order of score, x, y

isSubpix: whether sub-pixel precision interpolation, 0-no,

1-yes

polar: match polarity

polar Polarity Description

0 ± The light-dark transformation of the

template and the target are the same.

1 Any The light-dark transformation of the

template and the target are the same or

the opposite.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

253

Example

ZVOBJECT model, matchImg, clrImg

ZV_READIMAGE(model, "model.png", 0)

'read the image in the original image format

ZV_READIMAGE(matchImg, "test.png", 0)

'read the image in the original image format

ZV_BESTTEMPL(matchImg,60,0,0,0)

'use the grayscale matching method to obtain the best

position and store the coordinate position in TABLE (0).

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

? TABLE (0) ‘match the score

ZV_MARKER(clrImg,TABLE(0),TABLE(1),TABLE(2),0,50,zv_color(

255,0,0)) 'draw cross

6.3.3. ZV_MULTITEMPL – Match Grayscale Template

Type Grayscale matching

Description

Multi-target grayscale matching, search for targets matching

the template in the search image, and return the top nums

matching results with scores that are greater than minScore.

Grammar

ZV_MULTITEMPL (img, modImg, matRst, minScore, [num=0,

minDist = 0, polar = 0])

img: ZVOBJECT type, the image to be matched

modImg: ZVOBJECT type, the template image

matRst: ZVOBJECT type, matching result, matrix type, N

rows and 3 columns, one result in each row, the order of the

results is score, x coordinate and y coordinate.

minScore: minimum matching score

254

nums: the maximum number of matches, take the first

nums results with the highest score, if it is 0, take all the results

minDist: the minimum distance between two matching

results, ≥ 0, if = 0, the distance is automatically selected.

isSubpix: whether sub-pixel precision interpolation

polar: match polarity

polar Polarity Description

0 ± The light-dark transformation of the

template and the target are the same.

1 Any The light-dark transformation of the

template and the target are the same or

the opposite.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT model, matchImg, clrImg, results

ZV_READIMAGE(model, "model.png", 0)

'read the image in the original image format

ZV_READIMAGE(matchImg, "test.png", 0)

’read the image in the original image format

ZV_MULTITEMPL(matchImg,model,results,90,1,0,0,0)

'grayscale template matching, generating matching matrix

results

ZV_MATGETROW(results,0,3,0)

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

? TABLE(0)' match score

ZV_MARKER(clrImg,TABLE(1),TABLE(2),0,50,zv_color(255,0,0))

'draw a cross

255

256

Chapter VII Measurement

7.1. Measurer Generation

7.1.1. ZV_MRGENRECT – Generate Rectangle Measurer

Type Measurement region

Description

Generate a rectangular point measurer and a single-area

measurer. The measurer cannot exceed the image range,

otherwise an error will be reported.

Grammar

ZV_MRGENRECT(mr,x,y,w,h)

mr: ZVOBJECT type, rectangular area measurer

x: upper left x coordinate of the rectangular area, range

[0,32766]

y: upper left y coordinate of the rectangular area, range

[0,32766]

w: width of the rectangular area, range [1,32766]

h: height of rectangular area, range [1,32766]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

ZV_MRGENRECT(mr,20,20,100,100)

'generate a rectangular measurer

7.1.2. ZV_MRGENRECT2 – Generate Rotate Rectangle

Measurer

Type Measurement region

Description

Generate a rotate rectangular point measurer and a single-area

measurer. The measurer cannot exceed the image range,

otherwise an error will be reported.

257

Grammar

ZV_MRGENRECT2(mr,cx,cy,w,h,angle,interp)

mr: ZVOBJECT type, rotated rectangular area measurer

cx: the x coordinate of the center of the rotating rectangle,

range [0,32766]

cy: the y coordinate of the center of the rotating rectangle,

range [0,32766]

w: rotated rectangle width, range [1, 32766]

h: rotated rectangle height, range [1, 32766]

angle: angle of the rotating rectangle, + clockwise, the unit

is degree, range (-180, 180], if it exceeds the range, it will be

automatically normalized to this range

interp: interpolation algorithm, range [0,3], 0-nearest

neighbor interpolation, 1-bilinear interpolation, 2-bi-cubic

interpolation, 3-LANCZOS, common value 1

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

ZV_MRGENRECT2(mr,120,120,100,100,60,0)

'generate a rotated rectangular measurer

7.1.3. ZV_MRGENARC – Generate Arc Measurer

Type Measurement region

Description

Generate an arc point measurer and a single-area measurer. The

measurer cannot exceed the image range, otherwise an error will

be reported.

Grammar

ZV_MRGENARC(mr,cx,cy,r,annR[,starAngle=0,extAngle=360,dire

ction=0 , interp=1])

 mr: ZVOBJECT type, circular measurer

cx: center x coordinate of the arc, range [0,32766]

cy: the y coordinate of the center of the arc, range [0,32766]

r: the radius of the centerline of the arc, range [1, 16383]

annR: half-width of the arc, range (0,r)

startAngle: starting angle of the measurement area,

258

determined by the image coordinate system, the unit is degree,

range (-180,180], if it exceeds the range, it will automatically

normalize to this range

extAngle: angle range of the measurement area, (0, 360], the

unit is degree, if it is > 360, it will automatically convert to 360

internally

direction: scan direction, 0-tangential clockwise, 1-radial

from outside to inside

interp: interpolation algorithm, range [0,3], 0-nearest

neighbor interpolation, 1-bilinear interpolation, 2-bi-cubic

interpolation, 3-LANCZOS

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

ZV_MRGENARC(mr,120,120,20,10,60,120,0,1)

'generate an arc measurer

7.2. Single Area Measurement

7.2.1. ZV_MRPROJECTION – Grayscale Projection

Type Single area measurement

Description

The grayscale distribution of the measurement area is along the

width direction or along the positive direction of the tangential

angle, and the arc is along the specified direction. The

circumscribed moment of the measurement area cannot exceed

the boundary of the measured image.

259

Grammar

ZV_MRPROJECTION (mr,img,matProj)

mr: ZVOBJECT type, single measurement area

img: ZVOBJECT type, measured image, single-channel

image

matProj: ZVOBJECT type, grayscale distribution of the

image measurement area, matrix type

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr,img,result

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MRGENRECT(mr,10,142,637,262)

'generate a rectangular measurer

ZV_MRPROJECTION(mr,img,result)

'grayscale projection of the measurement area

7.2.2. ZV_MRPOS – Detect Point

Type Single area measurement

Description

Use a rectangular, rotating rectangular or arc measurer to

measure a point, that is, a point that meets the threshold, the

polarity and the position in the grayscale projection, that is,

detect a point that meets the conditions in the measurement

260

area, and the circumscribed moment of the measurement area

cannot exceed the boundary of the measured image.

Grammar

ZV_MRPOS(mr,img matPts,filterSize,thresh,polar,select)

mr: ZVOBJECT type, single area measurer

img: ZVOBJECT type, measured target image, single-

channel image

matPts: ZVOBJECT type, matrix type, detected point, n rows

and 3 columns, followed by x coordinate, y coordinate and

threshold of the point

filterSize: filter size, range [1, 201], odd value, common

values are 3, 5, 7. If the even number is taken, it will be

automatically converted to the nearest odd number internally.

thresh: threshold, range [0,255], if it is 0, the default value is

100

polar: edge polarity: 0-white to black, 1-black to white, 2-all

selec: edge position: 0-first point, 1-last point, 2-strongest

point, 3-all points

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr,img,clrImg,ptsMat

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MRGENRECT(mr,4,255,644,34)

'generate the rectangular measurer

ZV_MRPOS(mr,img,ptsMat,3,80,2,3)

'measure the target image and detect the points set by

relevant parameters

ZV_MATINFO(pts_mat, 0)

261

ZV_GRAYTORGB(img,clrImg)

'convert grayscale image to RGB image

ZV_RECT(clrImg, 4, 255, 644, 34, ZV_COLOR(0,255,0))

FOR i = 0 TO TABLE(0)-1

ZV_MATGETROW(ptsMat, i, 3, 10)

ZV_MARKER(clrImg,TABLE(10),TABLE(11),0,20,ZV_COLOR(

255,0,0)) ‘draw the cross

NEXT

7.2.3. ZV_MRPAIRS – Detect Point-Pair

Type Judge

Description

Use a rectangular, rotating rectangular or arc measurer to

measure the point pair or distance, that is, a point that meets the

threshold, the polarity and the position in the grayscale

projection, that is, detect a point-pair that meets the conditions

in the measurement area, and the circumscribed moment of the

measurement area cannot exceed the boundary of the

measured image.

Grammar

ZV_MRPAIRS(mr, img, matPts, filterSize, thresh, polar, polar2,

select)

mr: ZVOBJECT type, the rectangle is the width direction

detection, the arc is specified by the parameter, and the single

area measurer

img: ZVOBJECT type, measured target image, single-

channel image

matPts: ZVOBJECT type, matrix type, detected point pairs,

n rows and 8 columns, followed by point distance, spacing, x1,

y1, x2, y2, t1, t2.

➢ point distance -- the distance between point 1 and point 2

➢ spacing -- the distance between point 1 and the previous

point 2

➢ (x1, y1) -- point 1 coordinates

➢ (x2, y2) -- point 2 coordinates

262

➢ t1 -- point 1 threshold, t2--point 2 threshold

filterSize: filter size, range [1,201], odd value, commonly

used value 3, if the even number is taken, it will be automatically

converted to the nearest odd number internally

thresh: threshold, range [0,255], if it is 0, the default value is

100

polar1: point 1 edge polarity: 0-white to black, 1-black to

white, 2-all

polar2: point 2 edge polarity: 0-white to black, 1-black to

white, 2-all. The number selected for this parameter is

determined based on polar1. The situations are: polar1 = 0,

polar2 = 1; polar1 = 1, polar2 = 0; polar1 = 2, polar2 = 2;

select: point pair selection: 0-front, 1-last, 2-widest, 3-all

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr, img, clrImg, ptsMat

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MRGENRECT(mr,4,255,644,34)

'generate the rectangular measurer

ZV_MRPAIRS(mr,img,ptsMat,3,80,1,2)

'in the image img, use the area measurer, rotated

rectangle or arc area measurer mr, according to the

parameter settings, generate matrix data mat, in order

of point moment, spacing, x1, y1, x2, y2, t1, t2

ZV_MATINFO(pts_mat, 0)

ZV_GRAYTORGB(img,clrImg)

'convert grayscale image to RGB image

263

ZV_RECT(clrImg, 4, 255, 644, 34, ZV_COLOR(0,255,0))

FOR i = 0 TO TABLE(0)-1

ZV_MATGETROW(ptsMat, i, 8, 10)

ZV_MARKER(clrImg,TABLE(12),TABLE(13),0,20,ZV_COLOR(

255,0,0)) ‘draw the cross

ZV_MARKER(clrImg,TABLE(14),TABLE(14),0,20,ZV_COLOR(

0,255,0)) ‘draw the cross

NEXT

7.2.4. ZV_MRPEAK – Detect Peak Point

Type Single area measurement

Description

Use a rectangular, rotating rectangular or arc measurer to

measure the peak point, that is, the leftmost point and the

rightmost point of the measurement region, and the

circumscribed moment of the measurement area cannot exceed

the boundary of the measured image.

Grammar

ZV_MRPEAK(mr,img,tabId,filterSize,thresh,polar,select,scanWid

th)

 mr: ZVOBJECT type, area measurer

img: ZVOBJECT type, target image for measurement

tabId: TABLE index, the coordinates of the leftmost point

and the rightmost point in order, that is, xl, yl, xr, yr

filterSize: filter size, range [1,201], take an odd value, the

common value is 3, if it is an even number, it will automatically

convert to nearest odd number

thresh: threshold, range [0,255], if it is 0, the default value is

100

polar: edge polarity: 0-white to black, 1-black to white, 2-all

select: edge position: 0-first point, 1-last point, 2-strongest

point

scanWidth: the scan width of the caliper moment, the

common value is 5, if it is > 1 and ≤ 0, 1 is taken.

Controller It is valid in controllers that support ZV function or they belong

264

to 5XX series or above.

Example

ZVOBJECT mr,clrImg,img

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MRGENRECT(mr,10,142,637,262)

'generate a rectangular measurer

ZV_MRPEAK(mr,img,0,3,80,0,0,5)

'measure the target image and detect the points set by

related parameters

ZV_GRAYTORGB(img,clrImg)

'convert grayscale image to RGB image

ZV_MARKER(clrImg,TABLE(0),TABLE(1),0,20,ZV_COLOR(255,0,0

)) 'draw a cross

ZV_MARKER(clrImg,TABLE(2),TABLE(3),0,20,ZV_COLOR(255,0,0

)) 'draw a cross

7.2.5. ZV_MRSIZE –Measurement Area Size Trends

Type Single area measurement

Description

Use a rectangular, rotating rectangular or arc measurer to

measure the minimal and maximum value of point pair size, that

is, output the value and the center point position of the

corresponding scanning area. The point selection parameters

are not set for the measurement, and the widest point pair within

the scanning line is used for comparison. Relative threshold

mode is used by default.

Grammar

ZV_MRSIZE (mr, img, tabId, filterSize, thresh, polar1, polar2,

scanWidth)

 mr: ZVOBJECT type, area measurer

img: ZVOBJECT type, target image for measurement

tabId: TABLE index, which is the minimum size, the

minimum size corresponding to the x and y coordinates of the

center of the scanning area, the maximum size, and the

maximum size corresponding to the x and y coordinates of the

265

center of the scanning area.

filterSize: filter size, range [1,201], take an odd value, the

common value is 3, if it is an even number, it will automatically

convert to nearest odd number

thresh: threshold, range [0,255], if it is 0, the default value is

100

polar1: first edge polarity: 0-white to black, 1-black to white,

2-all

polar2: second edge polarity: 0-white to black, 1-black to

white, 2-all

scanWidth: the scan width of the caliper moment, the

common value is 5, if it is > 1 and ≤ 0, 1 is taken.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr, img

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MRGENRECT(mr,10,142,637,262)

'generate a rectangular measurer

ZV_MRSIZE(mr,img,0,3,80,0,1,5) 'measure size polarity

?table (0), table (3)

 ‘measure minimal value and maximal value in region

range

7.3. Segment Region Generation & Measurement

7.3.1. ZV_MRGENLINE – Line Measurement

Type Segment area measurement

Description

Generate a rotated rectangular area for straight-line

measurement, slice the area along the y direction, and the

subregion takes the threshold along the x direction.

266

Grammar

ZV_MRGENLINE(mr,cx,cy,width,height,angle,interp,subNum,sub

Width)

 mr: ZVOBJECT type, linear measurer

cx: the x coordinate of the center of the rotating rectangle,

range [0,32766]

cy: the y coordinate of the center of the rotating rectangle,

range [0,32766]

width: width of the rotated rectangle, the unit is pixel, range

[1,32766]

height: height of rotated rectangle, the unit is pixel, range

[1,32766]

angle: angle of the rotated rectangle, determined by the

image coordinate system, the unit is degree

interp: interpolation algorithm, reference rotation

subNum: the number of sub-regions, indicating the number

of sub-regions that the rotated rectangle is divided into, > 2,

otherwise the default value is 8

subWidth: sub-area width, the unit is pixel

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

267

ZV_MRGENLINE(mr,,120,100,80,60,90,5,5)

'generate a rotation area for linear measurement

7.3.2. ZV_MRGENCIRCLE – Circle Measurement

Type Segment area measurement

Description

Generate a circular measurement area, divide the area clockwise

along the tangential direction, and calculate the grayscale value

of the sub-area along the radial direction toward the center of

the circle to select the target point.

Grammar

ZV_MRGENCIRCLE(mr,cx,cy,r,annR[,startAngle=0,extAngle=360,

interp=1, subNum=0, subWidth=0])

 mr: ZVOBJECT type, circle measurer

cx: the center x coordinate of the arc, range [0,32766]

cy: the y coordinate of the center of the arc, range [0,32766]

r: radius of the center line of the arc, the unit is pixel, range

[1,16383]

annR: arc half-width, the unit is pixel, range (0,r)

startAngle: starting angle of the measurement area,

determined by the image coordinate system, that is, clockwise

is positive (image coordinate system), the unit is degree

extAngle: measurement area angle range, range (0, 360], if

it is > 360, it will be automatically converted to 360 internally

interp: interpolation algorithm, reference rotation

subNum: the number of sub-regions, which represents the

268

number of sub-regions (arc is divided), > 3, otherwise the default

value is 8

subWidth: sub-area width, the unit is pixel

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

ZV_MRGENCIRCLE(mr,120,120,60,40,0,120,1,0,0)

'generate the circle measurer

7.3.3. ZV_MRSETADV – Advanced Parameters Setting of

Segment Measurement Region

Type Segment area measurement

Description Set advanced parameters of segment measurement region.

Grammar

ZV_MRSETADV(mr,filterSize,thresh,polar,select)

 mr: ZVOBJECT type, measurer

filterSize: filter size, range [1,201], default value is 5

thresh: threshold, range [0,255], if it is 0, the default value is

100

polar: edge polarity: 0-white to black, 1-black to white, 2-all,

the default value is 2

select: edge position, edge position, based on the scanning

direction, 0-first point, 1-last point, 2-strongest point, 3-all

269

points

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

ZV_MRSETADV(mr,5,20,0,1)

'set advanced parameters of segment measurement region.

7.3.4. ZV_MRGETADV – Advanced Parameters Reading of

Segment Measurement Region

Type Segment area measurement

Description Get advanced parameters of segment measurement region.

Grammar

ZV_MRGETADV(mr,tabId)

mr: ZVOBJECT type, measurer

tabId: TABLE index, output parameters, obtained measurer

parameters, in order filterSize, thresh, polar, select, that is, filter

size, threshold, edge polarity, edge position

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

ZV_MRSETADV(mr,5,20,0,1)

'set advanced parameters for subdivided measurement area

ZV_MRGETADV(mr,0)

'output the parameters of the measurer to the TABLE (0) index,

and stores the filter size, threshold, edge polarity, and edge

position in sequence

270

7.3.5. ZV_MREDGE – Measure Point of Segment Area

Type Segment area measurement

Description

Use straight line or circle measurement area to obtain

measurement result points

Grammar

ZV_MREDGE(mr,img,pts)

 mr: ZVOBJECT type, linear or circular measurement area

img: ZVOBJECT type, measured target image, single-

channel image

pts: ZVOBJECT type, measured result points, n*2 matrix,

one point per row, that is, x, y

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr, img, pts

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MRGENLINE(mr,48,140,25,259,0,0,10,5)

'generate a rotating area measured by a line

ZV_MREDGE(mr,img,pts)

'segment area measurement, use a line or circle

measurement area mr in the target image img to measure points

and obtain result points and store them in pts

7.3.6. ZV_MRLINE – Line

Type Segment area measurement

Description Use the straight-line measurement area to measure straight

271

lines, divide the sub-areas along the height, and measure a point

in each sub-area, and the scan direction is from left to right.

Grammar

ZV_MRLINE(mr,img,matPts,tabId)

 mr: ZVOBJECT type, linear measurement area

img: ZVOBJECT type, measured target image, single-

channel image

matPts: ZVOBJECT type, measured result points, n*2

matrix, one point per row

tabId: TABLE index, in order x1, y1, x2, y2, that is, the

coordinates of the end points of the line

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr,img,clrImg, pts

ZV_READIMAGE(img, "test.png",0)

'read the image in the original image format

ZV_MRGENLINE(mr,219,207,80,188,0,0,20,2)

'generate the rotation area of the linear measurement

ZV_MRSETADV(mr,3,120,0,1)

ZV_MRLINE(mr,img,pts,0)

'store the end point of the target line measured by the

rectangular measurement area into the TABLE whose

starting index is 0

ZV_GRAYTORGB(img,clrImg)

'convert grayscale image to RGB image

ZV_LINE(clrImg, TABLE(0), TABLE(1), TABLE(2), TABLE(3),

ZV_COLOR(0,255, 0))

7.3.7. ZV_MRCIRCLE – Circle

Type Segment area measurement

Description

Use the arc measurement area to measure circle, divide the sub-

areas along starting angle to end angle, and measure a point in

each sub-area, and the scan direction is from outside to inside.

Grammar ZV_MRCIRCLE(mr,img,matPts,tabId[,inmr=1])

272

 mr: ZVOBJECT type, arc measurement area

img: ZVOBJECT type, measured target image, single-

channel image

matPts: ZVOBJECT type, measured result points, n*2

matrix, one point per row

tabId: TABLE index, output parameters, in order cx, cy,

radius, that is, circle center coordinates and radius

inmr: input parameter, indicating whether the measured

circle should be included in the arc roi.

0- the circle does not need to be included in the arc

roi.

1- the circle is included in the arc roi, but circles

beyond the roi will not be detected.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr,img,clrImg,pts

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_MRGENCIRCLE(mr,302,79,120,15,0,360,1,30,5)

ZV_MRCIRCLE(mr,img,pts,0,1)

'store the target circle coordinates and radius measured by

the arc measurement area into the TABLE (0)

ZV_GRAYTORGB(img,clrImg)

'convert grayscale image to RGB image

ZV_CIRCLE(clrImg,TABLE(0),TABLE(1),TABLE(2),ZV_COLOR(0,2

5,0))

273

7.4. Measurer ROI

7.4.1. ZV_MRGETROI – Get Measurer ROI & Segment

Parameters

Type Measurer ROI and segment area measurement

Description Get measurer ROI parameters and segment parameters.

Grammar

ZV_MRGETROI(mr,tabId)

 mr: ZVOBJECT type, measurer

tabId: TABLE starting index, followed by 6 ROI parameters

(may not be fully occupied), they are interpolation type

(rectangular measurement area is invalid), sub-area number

(non-subdivision measurer is invalid), sub-region width (non-

subdivision measurer is invalid)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mr

ZV_MRGENLINE(mr,219,207,80,188,0,0,20,2)

'generate a rotation area for linear measurement

ZV_MRSETADV(mr,3,120,0,1)

ZV_MRGETROI(mr,0)

'get the parameters of the measurer mr into TABLE (0)

7.5. Transformation

7.5.1. ZV_MRCORRECT – Measurement Area Correction

Type Transformation

Description
According to matrix mat, correct measurement area mar and

output to corrMr.

Grammar ZV_MRCORRECT(mr,mat,corrMr)

274

 mr: ZVOBJECT type, input measurement area

mat: ZVOBJECT type, corrected transformation matrix, 2*2

matrix or 3*3 matrix

corrMr: ZVOBJECT type, transformed measurement area

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Related Instruction Refer to “measurement position correction”.

275

Chapter VIII Region

8.1. Region Generation

8.1.1. ZV_REGENLINE – Line

Type Generation

Description

Generate a straight-line area, and the generated area will be

automatically cropped to the range where x belongs to [0,32766]

and y belongs to [0,32766].

Grammar

ZV_REGENLINE(re,stx,sty,endx,endy)

re: ZVOBJECT type, generated area

stx: the x coordinate of the starting point of the line, the

range is [0,32766], it will be clipped to this range if it exceeds the

range

sty: the y coordinate of the starting point of the line, the

range is [0,32766], it will be clipped to this range if it exceeds the

range [0,32766]

endx: the x coordinate of the end point of the line, range

[0,32766], it will be clipped to this range if it exceeds the range.

endy: the y coordinate of the end point of the line, range

[0,32766], it will be clipped to this range if it exceeds the range.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT re

ZV_REGENLINE(re,50,50,200,200)

'the straight line area with starting point (50,50) and end

point (200,200) is put into the area variable “re”

8.1.2. ZV_REGENRECT – Rectangle

Type Generation

Description Generate a rectangle area that is parallel to horizontal axis, and

276

the generated area will be automatically cropped to the range

where x belongs to [0,32766] and y belongs to [0,32766].

Grammar

ZV_REGENRECT(re, x, y, width, height)

re: ZVOBJECT type, generated area

x: x coordinate of the upper left corner of the rectangle,

range (--,32766)

y: y coordinate of the upper left corner of the rectangle,

range (--,32766)

width: width of the rectangle, range [1,32766]

height: height of the rectangle, range [1,32766]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT re

ZV_REGENRECT(re,0,0,100,100)

‘generate a rectangular area with the coordinates of the

upper left corner of the rectangle at (0,0) and a width and

height of 100 into the area variable re

8.1.3. ZV_REGENRECT2 – Rectangle with Angle

Type Generation

Description

Generate a rectangle area that is with the angle, and the

generated area will be automatically cropped to the range where

x belongs to [0,32766] and y belongs to [0,32766].

Grammar

ZV_REGENRECT2(re, cx, cy, width, height, angle)

re: ZVOBJECT type, generated area

cx: x coordinate of rectangle center

cy: y coordinate of rectangle center

width: width of the rectangle, range [1,32766]

height: height of the rectangle, range [1,32766]

angle: rectangle angle, image coordinate system, clockwise

is positive, and the unit is degree

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

277

Example

ZVOBJECT re

ZV_REGENRECT2(re,320,240,120,80,30)

'generate a rectangular area with center point coordinates

(320,240), width 120, height 80, angle 30 degrees to the area

variable re

8.1.4. ZV_REGENCIRCLE – Circle

Type Generation

Description

Generate a circle area, and the generated area will be

automatically cropped to the range where x belongs to [0,32766]

and y belongs to [0,32766].

Grammar

ZV_REGENCIRCLE(re, cx, cy, radius)

re: ZVOBJECT type, generated area

cx: x coordinate of rectangle center

cy: y coordinate of rectangle center

radius: circle’s radius, range (0, 16383]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_REGENCIRCLE(re,320,240,30)

'generate an area with the circular center coordinates (320,240)

and a radius of 30 into the area variable re

8.1.5. ZV_REGENANNULAR – Annular

Type Generation

Description

Generate an annular area, and the generated area will be

automatically cropped to the range where x belongs to [0,32766]

and y belongs to [0,32766].

Grammar

ZV_REGENANNULAR(re, cx, cy, radius1, radius2)

re: ZVOBJECT type, generated area

cx: x coordinate of rectangle center

cy: y coordinate of rectangle center

278

radius1: inner radius, range (0, 16383]

radius2: outer radius, range (radius1, 16383]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT re

ZV_REGENANNULAR(re,320,240,30,60)

 ‘generate an area whose center is (320, 240) coordinates,

inner radius is 30 and outer radius is 60 into “re” area variable

8.1.6. ZV_REGENSECTOR – Sector

Type Generation

Description

Generate a sector area, and the generated area will be

automatically cropped to the range where x belongs to [0,32766]

and y belongs to [0,32766].

Grammar

ZV_REGENSECTOR(re, cx, cy, radius1, radius2, stAngle,

extAngle)

re: ZVOBJECT type, generated area

cx: x coordinate of rectangle center

cy: y coordinate of rectangle center

radius1: inner radius

radius2: outer radius

stAngle: sector starting angle, image coordinate system,

clockwise is positive, the unit is degree

extAngle: sector angle range, the unit is degree

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT re

ZV_REGENSECTOR(re,320,240,30,60,0,120)

'generate a region with the center point coordinates

(320,240), an inner circle radius of 30, an outer circle radius

of 60, a starting angle of 0, and an angle range of 120 to the

area variable re

279

8.1.7. ZV_REGENPOLYGON – Polygon

Type Generation

Description

Generate a polygon area, for the polygon area that is composed

by point group, it needs 3 points at least, and the generated area

will be automatically cropped to the range where x belongs to

[0,32766] and y belongs to [0,32766].

Grammar

ZV_REGENPOLYGON(pts,re)

pts: ZVOBJECT type, nx2 matrix type, polygon point set

re: ZVOBJECT type, generated area

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT pts,re

TABLE(0,100,50,200,50,230,100,150,200)

ZV_MATGENDATA(pts,4,2,0) 'construct polygon point set

ZV_REGENPOLYGON(pts,re) 'generate polygon

8.1.8. ZV_REGENFULLIMG – Full Area

Type Generation

Description Generate an area that covers full image.

Grammar

ZV_REGENFULLIMG(pts,re)

pts: ZVOBJECT type, input image

re: ZVOBJECT type, generated area that covers full image,

output parameter

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img,re

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,re)

'generate the area covering the whole image into the re area

variable, which is equivalent to ZV_REGENRECT(re,0,0,w,h), and

w, h are the width and height of the input image img

280

8.2. Region Binarization

8.2.1. ZV_RETHRESH – Region Binarization

Type Generation

Description Generate an area that covers full image.

Grammar

ZV_REGENFULLIMG(pts,re)

pts: ZVOBJECT type, input image

re: ZVOBJECT type, generated area that covers full image,

output parameter

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img,re

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,re)

'generate the area covering the whole image into the re area

variable, which is equivalent to ZV_REGENRECT(re,0,0,w,h), and

w, h are the width and height of the input image img

8.2.2. ZV_RETHRESH – Region Binarization

Type Generation

Description

Image binarization generation area, that is, the image in the

mask area specified by “mask” is binarized, and the position

where the pixel value is between the thresholds thresh0 and

thresh1 is determined as the generation area

Grammar

ZV_RETHRESH(img,mask,re,thresh0,thresh1)

 img: ZVOBJECT type, input image

mask: ZVOBJECT type, mask area

re: ZVOBJECT type, area obtained by binarization, output

parameter

thresh0: low threshold, range [0,255]

thresh1: high threshold, range [0,255], thresh1 is greater

281

than or equal to thresh0

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, dst

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENRECT(mask,219,194,151,45)

'generate a rectangular area, generate a mask area

ZV_RETHRESH(img,mask,re,130,255)

'binarize the image in the area specified by mask

ZV_RETOIMG(re,dst,TABLE(0), TABLE (1))

'convert region to binarized image

8.2.3. ZV_REAUTOTHRESH – Auto-Binarization

Type Generation

Description

The image is automatically binarized to generate an area, and

the image within the mask area specified by mask is

automatically binarized.

Grammar

ZV_REAUTOTHRESH(img,mask,re,tabId)

 img: ZVOBJECT type, input image

mask: ZVOBJECT type, mask area

re: ZVOBJECT type, area obtained by automatic

binarization, output parameter

tabId: TABLE index, output parameter, threshold used for

automatic binarization

Controller It is valid in controllers that support ZV function or they belong

282

to 5XX series or above.

Example

ZVOBJECT img, mask, re, dst

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENRECT(mask,219,194,151,45)

'generate a rectangular area, generate a mask area

ZV_REAUTOTHRESH(img,mask,re,10)

'automatically binarize the image in the area specified by

mask, thresh = TABLE(0), thresh is the threshold used for

binarization

? TABLE (10)

ZV_RETOIMG(re,dst,TABLE(0), TABLE (1))

'convert region to binarized image

8.2.4. ZV_RETOIMG – Convert Region to Binarization

Type Conversion

Description

Convert the area to a binary image, and the maximum data size

of the generated image cannot exceed 2G, that is, width * width

<= 2048*1024*1024

Grammar

ZV_RETOIMG(re,img,width,height)

re: ZVOBJECT type, area to be converted

img: ZVOBJECT type, converted image

width: converted image width, [1,32766]

height: converted image height, [1,32766]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

283

Example

ZVOBJECT img, mask, re, dst

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_IMGINFO(img,0) 'get the basic information of the image

ZV_REGENRECT(mask,227,152,521,527)

'generate rectangular area, generate mask area

ZV_REAUTOTHRESH(img,mask,re,10)

'area automatic binarization

ZV_RETOIMG(re,dst,TABLE(0), TABLE (1))

'area to binary image, convert the locale set by re to a binary

image with the same size as the img image

8.3. Region Clip

8.3.1. ZV_RECLIP – Clip Region

Type Conversion

Description

Cropping the input area into a rectangle described by the control

parameters, which is equivalent to the intersection of the input

area and the rectangular area described by the control

parameters, but it is more efficient than using the control

parameters to call ZV_REGENRECT to generate a rectangular

area and then find out the intersect with the input area

obj_region.

Grammar

ZV_RECLIP(re,reCliped,x1,y1,x2,y2)

re: ZVOBJECT type, input area

reCliped: ZVOBJECT type, clipped area

x1: upper left corner of rectangle x coordinate

y1: upper left corner of rectangle y coordinate

x2: lower right corner of rectangle x coordinate

y2: lower right corner of rectangle y coordinate

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

284

Example

ZVOBJECT img, re, reCliped

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_RECLIP(re,reCliped,0,0,640,480)

'clip the re area to the rectangular area formed by the upper

left corner (0,0) coordinates and the lower right corner

(640,480) coordinates, and then store it in the variable

reCliped

8.4. Region Operation

8.4.1. ZV_REITSEC – Intersection

Type Region operation

Description

Calculate the intersection between re1 and re2.

Grammar

ZV_REITSEC(re1,re2,re)

 re1: ZVOBJECT type, region 1

re2: ZVOBJECT type, region 2

re: ZVOBJECT type, calculated intersection of area 1 and

area 2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT re1, re2, re

ZV_REITSEC(re1,re2,re)

‘calculate the intersection of two areas to the re area

285

8.4.2. ZV_REUNION – Union

Type Region operation

Description

Calculate the union between re1 and re2.

Grammar

ZV_REUNION(re1,re2,re)

 re1: ZVOBJECT type, region 1

re2: ZVOBJECT type, region 2

re: ZVOBJECT type, calculated union of area 1 and area 2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT re1, re2, re

ZV_REUNION(re1,re2,re)

‘calculate the union of two areas to the re area

8.4.3. ZV_REDIFF – Difference Set

Type Region operation

Description

Calculate the difference set between re1 and re2, that is, re1

minus re2.

Grammar

ZV_REDIFF(re1,re2,re)

 re1: ZVOBJECT type, region 1

re2: ZVOBJECT type, region 2

re: ZVOBJECT type, calculated difference set of area 1 and

area 2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

286

Example

ZVOBJECT re1, re2, re

ZV_REDIFF(re1,re2,re)

‘calculate the difference set of two areas to the re area

8.4.4. ZV_RECONNECT – Connection Area

Type Region operation

Description

Calculate the connected area of the area, decompose the input

area into multiple connected areas, one area may be composed

of multiple disconnected connected areas, so multiple

disconnected connected areas can be obtained by

decomposing an area, connected areas --- each trip in the area

is connected

Grammar

ZV_RECONNECT(re,reConnect)

re: ZVOBJECT type, input area

reConnect: ZVOBJECT type, list, output parameters, the

area stored in the list is the ZVOBJECT type

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM reCnt

ZVOBJECT img, dst, mask, re, reBIn, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

ZV_RETHRESH(img,mask,reBIn,0,150) 'region binarization

ZV_RECONNECT(reBIn,reConnect)

'calculate the connected area of the area

ZV_IMGCOPY(img,dst) 'copy image

287

ZV_IMGSETCONST(dst,0) 'set the pixel value of the image to 0

reCnt = ZV_LISTCOUNT(reConnect)

'get the number of connected areas

FOR i = 0 TO reCnt-1

ZV_LISTGET(reConnect,re,i)

ZV_REGION(dst,re,0,255)

NEXT

8.4.5. ZV_REUNIONLIST – Merge

Type Region operation

Description
Merge all the regions in the list into one region, that is, calculate

the union of all the regions in the list

Grammar

ZV_REUNIONLIST(list,reUnion)

 list: ZVOBJECT type, list

reUnion: ZVOBJECT type, merge area, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect, reUnion

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

'generate the area that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,150) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_REUNIONLIST(reConnect,reUnion)

'merge the regions in the list into one region

8.4.6. ZV_REFILLUP – Hole Filling

Type Region operation

Description Fill the area with holes and output the area after the holes are

288

filled.

Grammar

ZV_REFILLUP(re,reFill)

re: ZVOBJECT type, region

reFill: ZVOBJECT type, filled region, output parameter

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, clrImg, mask, re, reBin, reConnect, refill

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

'generate the area that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,150) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3) 'get element number 3 in the list

ZV_REFILLUP(re,reFill) 'fill holes in the area

ZV_GRAYTORGB(img,clrImg)

'convert grayscale image to RGB image

ZV_REGION(clrImg,reFill,0,ZV_COLOR(0,255,0))

289

8.4.7. ZV_REBOUNDARY – Boundary

Type Region operation

Description

Calculate the boundary of the area, which is the outline of the

area, the outline at the pixel level

Grammar

ZV_REBOUNDARY(re,reBoundary,type)

 re: ZVOBJECT type, area

reBoundary: ZVOBJECT type, boundary, output parameters,

boundary is also represented by area

type: border type, 0-outer border, the contour line is located

1 pixel beyond the edge of the area, 1-inner border, the contour

line is located at the edge of the area, 2-inner border does not

contain holes, the contour line is located in the area edge

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, mask, re, reBin, reConnect, reBoundary

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_IMGINFO(img,0) 'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generate an area that covers the entire image

ZV_RETHRESH(img,mask,reBin,0,150) 'region binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element with number 3 in the list

290

ZV_REBOUNDARY(re,reBoundary,0)

'calculate the outer boundary of the area

ZV_RETOIMG(reVoundary,dst,TABLE(0), TABLE (1))

'region to binary image

8.4.8. ZV_REDISTTRANS – Region Distance Image

Type Region operation

Description
Calculate the distance from each point in the area to the area

boundary and generate the corresponding distance map.

Grammar

ZV_REDISTTRANS(re,img,width,height,type)

re: ZVOBJECT type, region

img: ZVOBJECT type, generated single-channel distance

map

width: width of the generated image, range [1,32766]

height: height of the generated image, range [1,32766]

type: distance type, as follows:

Type Distance method

0 max(|x1-x2|,|y1-y2|)

1 |x1-x2|+|y1-y2|

2 √(𝑥1 − 𝑥22 + (𝑦1 − 𝑦2)2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

'generate the area that covers the whole image

291

ZV_RETHRESH(img,mask,reBin,0,150) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element number 3 in the list

ZV_REDISTTRANS(re,dst,640,480,2)

'generate the distance map of the area

8.4.9. ZV_RESKELETON – Skeletonization

Type Region operation

Description

Skeletonize regions to generate regions of individual pixels.

Grammar

ZV_RESKELETON(re,skeRe)

re: ZVOBJECT type, area

skeRe: ZVOBJECT type, skeleton area

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, mask, re, reBin, reConnect, skeRe

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_IMGINFO(img,0) 'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

292

ZV_RETHRESH(img,mask,reBin,0,150) 'area binarization

ZV_RECONNECT(reBin,reConnect)

' calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element number 3 in the list

ZV_RESKELETON(re,skeRe) 'regional skeletonization

ZV_RETOIMG(skeRe,dst,TABLE(0),TABLE(1))

'convert region to binary image

8.4.10. ZV_RESKELETONJUNCT – Area endpoints and

intersections

Type Region operation

Description

Calculate the endpoints and intersections of the region. In order

to obtain reliable results, the input region cannot contain lines

wider than one pixel, when the skeletonized (zv_re_skeleton)

region meets this condition, then the calculated results output

the endpoints and intersections in the form of a region.

Grammar

ZV_RESKELETONJUNCT(re,endPtsRe,junPtsRe)

re: ZVOBJECT type, area

endPtsRe: ZVOBJECT type, area, endpoint

junPtsRe: ZVOBJECT type, area, intersection

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

293

DIM reCnt

ZVOBJECT img, dst1, dst2, mask, re, reBin, reConnect, endPtsRe,

junPtsRe, skeRe

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated area that covers the whole image

ZV_RETHRESH(img,mask,reBin,178,255) 'region binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of region

ZV_IMGCOPY(img,dst1)

ZV_IMGSETCONST(dst1,0)

ZV_IMGCOPY(img,dst2)

ZV_IMGSETCONST(dst2,0)

reCnt = ZV_LISTCOUNT(reConnect)

FOR i = 0 TO reCnt-1

ZV_LISTGET(reConnect,re,i)

'get the element with serial number i in the list

ZV_RESKELETON(re,skeRe) 'region skeletonization

ZV_RESKELETONJUNCT(skeRe,endPtsRe,junPtsRe)

ZV_REGION(dst1,endPtsRe,0,255)

ZV_REGION(dst2,junPtsRe,0,255)

NEXT

294

8.5. Morphology

8.5.1. ZV_REDILATE – Rectangle Expansion

Type Feature

Description

Use rectangular structural elements to expand the area. The

expansion will expand the area and fill holes smaller than the

structural elements. And the time consumption is proportional

to the size of the structural elements.

Grammar

ZV_REDILATE(re,reDilate,width,height)

 re: ZVOBJECT type, region

reDilate: ZVOBJECT type, expanded area, output parameter

width: rectangular structure element width, range [1,511]

height: rectangular structure element height, range [1,511]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, mask, re, reDilate

ZV_IMGINFO(img,0) 'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated region that covers the entire image

ZV_RETHRESH(img,mask,re,0,120) 'area binarization

ZV_REDILATE(re,reDilate,3,3)

'dilate the area with a rectangular structure element 3 pixels

295

wide and 3 pixels high

ZV_RETOIMG(reDilate,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.2. ZV_REDILATECIRCLE – Circle Expansion

Type Feature

Description

Use circular structural elements to expand the area. The

expansion will expand the area, smooth the boundary of the

area, and fill holes smaller than the structural element. The time

consumption is proportional to the size of the structural

element. It is recommended that the structural element radius

be 0.5, 1.5, 2.5, 3.5, 5.5, etc., mainly to avoid translation of the

area, because a circle with an integer radius will have a non-

integer center of gravity, and this center of gravity will be

rounded to the next integer.

Grammar

ZV_REDILATECIRCLE(re,reDilate,radius)

 re: ZVOBJECT type, area

reDilate: ZVOBJECT type, expanded area, output parameter

radius: circular structure element radius, range [0.5, 255]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

296

ZVOBJECT img, dst, mask, re, reDilate

ZV_IMGINFO(img,0) 'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated region that covers the entire image

ZV_RETHRESH(img,mask,re,0,120) 'area binarization

ZV_REDILATECIRCLE(re,reDilate,1.5)

'dilate the region with a circular structure element with a

radius of 1.5 pixels

ZV_RETOIMG(reDilate,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.3. ZV_REERODE – Rectangle Erosion

Type Feature

Description

Use rectangular structural elements to corrode the area. Erosion

will shrink the area and remove areas smaller than the structural

elements. The time-consuming is proportional to the size of the

structural elements.

Grammar

ZV_REERODE(re,reErode,width,height)

 re: ZVOBJECT type, area

reErode: ZVOBJECT type, corroded area, output parameter

width: rectangular structure element width, range [1,511]

height: rectangular structure element height, range [1,511]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, mask, re, reErode

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

297

ZV_RETHRESH(img,mask,re,0,120) 'regional binarization

ZV_REERODE(re,reErode,3,3)

'use a rectangular structure element with a width of 3 pixels

and a height of 3 pixels to erode the area

ZV_RETOIMG(reErode,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.4. ZV_REERODECIRCLE – Circle Erosion

Type Feature

Description

Use circular structural elements to corrode the area. Corrosion

will shrink the area, smooth the boundaries of the area, and

remove areas smaller than the structural element. The time

consumption is proportional to the size of the structural

element. It is recommended that the structural element radius

be 0.5, 1.5, 2.5, 3.5, 5.5, etc., mainly to avoid translation of the

area, because a circle with an integer radius will have a non-

integer center of gravity, and this center of gravity will be

rounded to the next integer.

Grammar

ZV_REERODECIRCLE(re,reErode,radius)

 re: ZVOBJECT type, region

reErode: ZVOBJECT type, area after corrosion, output

parameter

radius: radius of circular structure element, range [0.5, 255]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

298

Example

ZVOBJECT img, dst, mask, re, reErode

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

ZV_RETHRESH(img,mask,re,0,120) 'regional binarization

ZV_REERODECIRCLE(re,reErode,1.5)

'use a circular structure element with a radius of 1.5 pixels

to erode the area

ZV_RETOIMG(reErode,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.5. ZV_REOPENING – Rectangle Opening Operation

Type Feature

Description

Use rectangular structural elements to do opening operation for

area, that is, first corrode and then expand. The opening

operation will not change the original shape characteristics of

the area, but it will remove the isolated area smaller than the

structural element or disconnect the connecting line smaller

than the structural element. And the time consumption is

proportional to the size of the structural element.

Grammar

ZV_REOPENING(re,reOpen,width,height)

 re: ZVOBJECT type, area

reOpen: ZVOBJECT type, area after opening operation,

output parameter

width: rectangular structure element width, range [1,511]

height: rectangular structure element height, range [1,511]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

299

Example

ZVOBJECT img, dst, mask, re, reOpen

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

ZV_RETHRESH(img,mask,re,0,120) 'regional binarization

ZV_REOPENING(re,reOpen,3,3)

'use a rectangular structure with a width of 3 pixels and a

height of 3 pixels to open the region

ZV_RETOIMG(reOpen,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.6. ZV_REOPENCIRCLE – Circle Opening Operation

Type Feature

Description

Use circular structural elements to do opening operation for

area, that is, first corrode and then expand. The opening

operation will not change the original shape characteristics of

the area, and has the effect of smooth area boundaries, but it

will remove isolated areas or disconnections smaller than the

structural elements or connecting lines that are smaller than

structural elements. Also, the time consumption is proportional

to the size of the structural elements. It is recommended the

structural element radius are 0.5, 1.5, 2.5, 3.5, 5.5, etc.

Grammar

ZV_REOPENCIRCLE(re,reOpen,radius)

 re: ZVOBJECT type, region

reOpen: ZVOBJECT type, area after opening operation,

output parameter

radius: radius of circular structure element, range [0.5, 255]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

300

Example

ZVOBJECT img, dst, mask, re, reOpen

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

ZV_RETHRESH(img,mask,re,0,120) 'regional binarization

ZV_REOPENCIRCLE(re,reOpen,1.5)

'use a circular structure element with a radius of 1.5 pixels

to open the area.

ZV_RETOIMG(reOpen,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.7. ZV_RECLOSECIRCLE – Circle Closing Operation

Type Feature

Description

Use circular structural elements to do closing operation for area,

that is, first expand and then corrode. The closing operation will

not change the original shape characteristics of the area, and

has the effect of smooth area boundaries, but it will connect

gaps smaller than structural elements or fill holes smaller than

structural elements, and the time-consuming is proportional to

the size of structural elements.

Grammar

ZV_RECLOSECIRCLE(re,reClose,radius)

 re: ZVOBJECT type, region

reClose: ZVOBJECT type, area after closing operation,

output parameter

radius: radius of circular structure element, range [0.5, 255]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

301

Example

ZVOBJECT img, dst, mask, re, reClose

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

ZV_RETHRESH(img,mask,re,0,120) 'regional binarization

ZV_REOPENCIRCLE(re,reClose,1.5)

'use a circular structure element with a radius of 1.5 pixels

to close the area.

ZV_RETOIMG(reClose,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.8. ZV_RECLOSING – Rectangle Closing Operation

Type Feature

Description

Use rectangular structural elements to do closing operation for

area, that is, first expand and then corrode. The closing

operation will not change the original shape characteristics of

the area, but it will connect gaps smaller than structural

elements or fill holes smaller than structural elements, and the

time-consuming is proportional to the size of structural

elements.

Grammar

ZV_RECLOSING(re,reClose,width,height)

 re: ZVOBJECT type, region

reClose: ZVOBJECT type, area after closing operation,

output parameter

width: rectangular structure element width, range [1, 551]

height: rectangular structure element height, range [1, 551]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

302

Example

ZVOBJECT img, dst, mask, re, reClose

ZV_IMGINFO(img,0)

'get the basic information of the image

ZV_REGENFULLIMG(img,mask)

'generated area that covers the entire image

ZV_RETHRESH(img,mask,re,0,120) 'regional binarization

ZV_REOPENCIRCLE(re,reClose,3,3)

'use a rectangular structure element with the width of 3

pixels and the height of 3 pixels to do closing operation

ZV_RETOIMG(reClose,dst,TABLE(0),TABLE (1))

'region to binary image

8.5.9. ZV_REMORPH – Region Morphology

Type Feature

Description

Use any structure element to perform morphological processing

on the region. The structure element uses the region to show,

which can be generated by the operator that generates the

region, such as ZV_REGENRECT, ZV_REGENRECT2,

ZV_REGENCIRCLE, etc. The time consumption is proportional to

the size of the structure element and the number of iterations.

303

Grammar

ZV_REMORPH(re,st,reMorph,op,iter)

 re: ZVOBJECT type, area

st: ZVOBJECT type, area, if it is empty or the area is invalid,

it will take a 3x3 rectangular area

reMorph: ZVOBJECT type, area, output parameters

op: morphological processing type

0 Corrosion, shrinking the area

1 Expand, expand the area

2 Opening operation to remove isolated areas smaller

than the structural elements or connecting lines

smaller than the structural elements.

3 Closing operation to connect gaps smaller than

structural elements or fill holes smaller than

structural elements

4 Morphological gradient. The gradient describes the

mutation part of the region. The junction from white

to black or black to white is the mutation part. That is,

the morphological gradient calculates the boundary

of the region.

5 Top hat, which separates isolated regions smaller

than structural elements, or separates connecting

lines smaller than structural elements

6 The bottom hat divides gaps that are smaller than the

structural element, or holes that are smaller than the

structural element.

iter: the number of iterations, the range [1,20], the common

value is 1, which means that the structure element st is used to

continuously perform morphological processing on the region,

and the time consumption is proportional to the number of

times.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, mask, re, st, reMorph

ZV_IMGINFO(img,0)

'get the basic information of the image

304

ZV_REGENFULLIMG(img,mask)

'generated area that covers the whole image

ZV_RETHRESH(img,mask,re,0,120) ‘region binarization

'ZV_REGENRECT(st,0,0,3,3) 'structural element

ZV_REMORPH(re,st,reMorph,0,1)

'use a 3x3 rectangular structure element to erode the region

ZV_RETOIMG(reMorph,dst,TABLE(0),TABLE (1))

'region to binary image

8.6. Feature

8.6.1. ZV_RERUNSNUM – Travel Numbers

Type Feature

Description

Get the number of trips in the area.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_RERUNSNUM(re,tabId)

Or count = ZV_RERUNSNUM(re)

re: ZVOBJECT type, region

305

tabId: TABLE index, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re,

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

'generated area covering the entire image

ZV_RETHRESH(img,mask,re,0,150) 'region binarization

ZV_RERUNSNUM(re,0)

'get the number of connected domains in the region, and put

the number of travels into TABLE(0)

8.6.2. ZV_RERUNS – Get Travel

Type Feature

Description Obtain the trip of specified No.id in the region.

Grammar

ZV_RERUNS (re, id, tabId)

Or count = ZV_RERUNSNUM(re)

re: ZVOBJECT type, region

id: No. id of specified area, ≥0, < region travel numbers

tabId: TABLE index, output parameters, “row” row No. of

travel, “cb” starting column and “ce” end column are output in

order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

306

Example

ZVOBJECT img, mask, re,

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

The area generated by ZV_REGENFULLIMG(img,mask)

 ‘generated area that covers the whole image

ZV_RETHRESH(img,mask,re,0,150) 'region binarization

ZV_RERUNS(re,1,0)

'get the trip of specified No. 1 in the region, and put the

values into the TABLE (0)

8.6.3. ZV_RECONNECTCNT – The Number of Connected

Aeras

Type Feature

Description Obtain the number of connected areas in the region.

Grammar

ZV_RECONNECTCNT(re,tabId)

re: ZVOBJECT type, area

tabId: TABLE index, output parameter

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

307

Example

ZVOBJECT img, mask, re,

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

The area generated by ZV_REGENFULLIMG(img,mask)

 ‘generated area that covers the whole image

ZV_RETHRESH(img,mask,re,0,150) 'region binarization

ZV_RECONNECTCNT(re,0)

'get the number of connected domains in the area and put

the number into TABLE(0)

? TABLE(0) 'for the image above, the output value is 14

8.6.4. ZV_REAREA – Area (Square)

Type Feature

Description

Calculate the square of the area (the number of pixels).

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_REAREA(re,tabId) or area = ZV_REAREA(re)

re: ZVOBJECT type, region

tabId: TABLE index, output area, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

DIM area

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

308

ZV_REGENFULLIMG(img,mask)

'generated area covering the entire image

ZV_RETHRESH(img,mask,reBin,0,150) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

area = ZV_REAREA(re) 'calculate the area of the area

? area

8.6.5. ZV_REHOLESCNT – The Number of Holes

Type Feature

Description Calculate the number of holes in the region.

Grammar

ZV_REHOLESCNT(re,tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re,

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,re,0,100) 'region binarization

ZV_REHOLESCNT(re,0)

'calculate the number of holes in the region, put the number

in TABLE(0)

? TABLE(0)

8.6.6. ZV_REHOLESAREA – The Aera of Holes

Type Feature

309

Description Calculate the area of holes in the region.

Grammar

ZV_REHOLESAREA(re,tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'region binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reBint,re,3)

'get the element of No.3 in the list

ZV_REHOLESAREA(re,0)

'calculate the area of the hole in the region and put the area

into TABLE(0)?

TABLE(0) 'for the above image, the output value is 1969

8.6.7. ZV_REAREACENTER – Region Area & Position

Type Feature

Description Calculate the center of the area.

310

Grammar

ZV_REAREACENTER(re, tabId)

re: ZVOBJECT type, area

tabId: TABLE index, output parameters, in order of area, cx,

cy, that is, the area of the area and the position of the center.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_REAREACENTER(re,0)

'calculate the area and center position of the area, put the

position into TABLE, area = TABLE(0), cx = TABLE(1), cy =

TABLE(2)

8.6.8. ZV_RECONTLENGTH – Length

Type Feature

Description

Calculate the perimeter of the region, that is, the contour length

of the region.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_RECONTLENGTH(re,tabId) or len = ZV_RECONTLENGTH(re)

re: ZVOBJECT type, region

tabId: TABLE index, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT img, mask, re, reBin, reConnect

311

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,re_connect)

'calculate the connected area of the area

ZV_LISTGET(re_connect, re_src, 3)

'get the element of No.3 in the list

ZV_RECONTLENGTH(re_src,0)

'calculate the perimeter of the region, put the perimeter into

TABLE(0)

? TABLE (0)

8.6.9. ZV_REORIENT – Angle

Type Feature

Description

Calculate the angle of the area. This operator is based on the

ZV_REELLIPAXIS operator. In addition, it also calculates the

point at the maximum distance between the area outline and the

center of gravity of the area. If the column coordinate of the

point is smaller than the column coordinate of the center of

gravity, it will add 180 to the angle calculated by

ZV_REELLIPAXIS.

Grammar

ZV_REORIENT(re,tabId) or angle = ZV_REORIENT(re)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, angle of the area,

clockwise is positive, unit is degrees, range [-180,180)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

312

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'region binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element whose sequence number is 3 in the list

ZV_REORIEN(re,0)

'calculate the direction angle of the region, put the angle

value into TABLE(0)

? TABLE(0)

8.6.10. ZV_REELLIPAXIS – Ellipse Axis Parameters

Type Feature

Description

Calculate the inertia axis (equivalent ellipse) parameters of the

area, that is, the axis and direction of the area are the same as

the axis and direction of the ellipse, and the direction (angle) is

the angle between the major axis (main axis) and the horizontal

line. The calculation method is to use the pixel center

coordinates to calculate the semi-major axis and semi-minor

axis. The returned major axis and minor axis are twice and plus

1 the corresponding semi-axis, that is, semi-axis*2+1. The

addition of 1 is because the area of the regional point is not Ideal

point, in this way, it can make the ellipse parameters more

suitable.

313

Grammar

ZV_REELLIPAXIS(re,tabId)

re: ZVOBJECT type, area

tabId: TABLE index, output parameter, the output is the

equivalent ellipse major axis, minor axis, angle (unit is degree,

clockwise is positive, range [-90,90)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'region binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_REELLIPAXIS(re,0)

'calculate the equivalent ellipse axis parameters of the area,

and put the parameters in turn into the TABLE whose index start

position is 0

8.6.11. ZV_RERECT – External Rectangle

Type Feature

Description

Calculate the minimum circumscribed moment of the area

parallel to the horizontal axis, that is, the smallest rectangle

parallel to the horizontal axis that can enclose the area

314

Grammar

ZV_RERECT(re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, the output is in order

of x, y, width, height, that is, the x coordinate of the upper left

corner of the rectangle, the y coordinate of the upper left corner

of the rectangle, the width of the rectangle, and the height of the

rectangle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_RERECT(re,0)

'calculate the minimum external moment of the area

parallel to the horizontal axis, and put the parameters into

the TABLE with the index starting position 0

315

8.6.12. ZV_RERECT2 – Minimal External Rectangle

Type Feature

Description

Calculate the minimum circumscribed rectangle, the smallest

rectangle can be with an angle, that is, the smallest rectangle

with an angle that can enclose the area. The calculation method

is to use the pixel center coordinates to calculate the half-width.

The returned length and width dimensions are twice the

corresponding half-width plus 1, that is, half-width * 2 + 1. Since

the area point has an area, the final length and width dimensions

are used as the length of the circumscribed rectangle of the

area. This is reasonable, but it should be noted that in the case

of an angle, the actual area is not completely included in the

outer rectangle, because the boundary pixels still have small

sharp corners outside the rectangle. For example, at an angle of

45° , the length of the exceeded part is 1 / √2-0.5

Grammar

ZV_RERECT2(re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, the output is in order

of cx, cy, width, height, angle, that is, the cx coordinate of the

center the rectangle, the cy coordinate of the center the

rectangle, the width of the rectangle, and the height of the

rectangle, the angle of the rectangle, angle clockwise is positive,

the unit is the degree, longer is the width, shorter is the height,

angle range [-90, 90]

Controller It is valid in controllers that support ZV function or they belong

316

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_RERECT2(re,0)

'calculate the minimum external moment of the area, and

put the parameters into the TABLE (0)

8.6.13. ZV_RECIRCLE – External Circle

Type Feature

Description

Calculate the minimum circumscribed circle, that is, the

smallest circle that can enclose the area. The same as the

calculation principle of the minimum circumscribed moment,

the calculation is based on the pixel center coordinates. It

should also be noted that the actual area is not completely

included in the circumscribed circle, and the boundary pixels still

have small sharp corners outside the circle, exceeding part of

the length is 1 / √2-0.5.

317

Grammar

ZV_RECIRCLE(re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, the output is in order

of cx, cy, radius, that is, the cx coordinate of the circle center, the

cy coordinate of the circle center, circle radius.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_RECIRCLE(re,0)

'calculate the minimum external circle of the area, and put

the parameters into the TABLE (0)

8.6.14. ZV_REINNERCIRCLE – Inner Circle

Type Feature

Description

Calculate the maximal inner circle, that is, the largest inner circle

that is enclosed by the area.

Note: this operator is time-consuming.

318

Grammar

ZV_REINNERRECT(re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, the output is in order

of cx, cy, radius, that is, the cx coordinate of the circle center, the

cy coordinate of the circle center, circle radius.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_REINNERCIRCLE(re,0)

'calculate the maximal inner circle of the area, and put the

parameters into the TABLE (0)

8.6.15. ZV_RECCLTY – Circularity

Type Feature

Description Calculate the shape factor of the region – circularity /

319

roundness, which indicates how similar the region is to the

circle. Assuming F is the square of the area and max is the

maximum distance from the center to all contour, circularity C is

defined as:

C = min (1, C’)

Grammar

ZV_RECCLTY(re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, range is [0,1], the

larger the value, the more circular it is, the empty area is 0, the

strip area is less than 1, and the circle area is 1

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_RECCLTY(re,0)

'calculate the circularity of the area, and put the parameters

into the TABLE (0)

8.6.16. ZV_RECONVEXITY – Convexity

Type Feature

Description

Calculate the shape factor of the region – convexity, area’s

square / the area corresponding to the convex hull. Assuming Fc

is the square of the convex hull and Fo is the original square of

320

the area, then convexity C is defined as:

Grammar

ZV_RECONVEXITY(re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, range is [0,1], the

larger the value, the convexity it is, the empty area is 0.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_RECONVEXITY(re,0)

'calculate the convexity of the area, and put values into the

TABLE (0)

8.6.17. ZV_RECMPTNS – Compactness

Type Feature

Description
Calculate the shape factor of the region – compactness.

Assuming L is the length of the area contour and F is the

321

square of the area, then compactness C is defined as:

C = max (1, C’)

Grammar

ZV_RECMPINS(re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, the empty area is 0.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_RECMPINS(re,0)

'calculate the compactness of the area, and put values into

the TABLE (0)

8.6.18. ZV_RERECTLTY – Rectangularity

Type Feature

Description

Calculate the rectangularity of an area, that is, a measure of

how close a shape is to being rectangular. The calculation of

the rectangularity is ultimately based on the area of the

normalized difference between the calculated rectangle and

the input region with respect to the area of the rectangle.

Grammar

ZV_RERECTLTY (re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, the empty area is 0.

Controller It is valid in controllers that support ZV function or they belong

322

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_RERECTLTY(re,0)

'calculate the rectangularity of the area, and put values into

the TABLE (0)

8.6.19. ZV_REECCENTRICITY – Shape Parameter

Type Feature

Description

Calculate the shape feature parameters of the area, that is, the

shape feature that is derived by ellipse parameter. Ra and Rb

represent the semi-major and semi-minor axes of the ellipse,

and A represents the aera of the region.

Grammar

ZV_REECCENTRICITY (re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, anisometry,

bulkiness, structFactor are output in order, that is, ellipse length

axis ratio, fluffy factor, structure factor.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

323

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_REECCENTRICITY(re,0)

'calculate the shape feature parameter of the area, and put

values into the TABLE (0)

8.6.20. ZV_REMOM2INVAR – Invariant 2rd Moment

Type Feature

Description

Calculate the scale-invariant 2rd moment of the region. Z0 and

S0 are the coordinate of area center R, the area is F, then the

definition of moment is:

Grammar

ZV_REMOM2INVAR (re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, m11, m20, m02, re11,

re12, foreGoundPixNum are output in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

324

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_REMOM2INVAR(re,0)

'calculate the scale-invariant 2rd moment of the region, and

put values into the TABLE (0)

8.6.21. ZV_REMOM3INVAR – Invariant 3st Moment

Type Feature

Description Calculate the scale-invariant 3st moment of the region.

Grammar

ZV_REMOM3INVAR (re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, m21, m12, m30, m03

are output in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_REMOM3INVAR(re,0)

'calculate the scale-invariant 3st moment of the region, and

put values into the TABLE (0)

8.6.22. ZV_REMOMCENTRA – Center Moment

Type Feature

325

Description Calculate the center moment of the region.

Grammar

ZV_REMOMCENTRA (re, tabId)

re: ZVOBJECT type, region

tabId: TABLE index, output parameter, center1, center2,

center3, center4 are output in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET(reConnect,re,3)

'get the element of No.3 in the list

ZV_REMOMCENTRA(re,0)

'calculate the center moment of the area, and put values

into the TABLE (0)

8.7. Transformation

8.7.1. ZV_RESORT – Sorting

Type Feature

Description Sort the region according to Feature.

326

Grammar

ZV_RESORT (relist, feature, isInc)

relist: ZVOBJECT type, area list to be sorted, list type

feature: sorted feature type, please see below form

isInc: whether is the ascending order, 0 means descending

order, otherwise is the ascending order.

0 Area 17 External rectangle height

1 Gravity X 18
External rectangle right

bottom x

2 Gravity Y 19
External rectangle right

bottom y

3 Angle 20 External rectangle h / w

4 Perimeter 21 Rotary rectangle center X

5 Circularity 22 Rotary rectangle center Y

6 Compactness 23 Rotary rectangle width

7 Rectangularity 24 Rotary rectangle height

8 Convexity 25 Rotary rectangle angle

9 -- 26 Rotary rectangle h / w

10
Equivalent elliptic main

axis length
27 External circle center x

11
Equivalent elliptic slave

axis length
28 External circle center y

12
Equivalent elliptic main

axis angle
29 External circle radius r

13

Equivalent elliptic semi-

main axis / semi- slave

axis

30 --

14 External rectangle x 31 Convex hull area

15 External rectangle y 32 Hole numbers

16 External rectangle width

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

327

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_RESORT(reconnect,0,0)

'sort the regions in descending order by area feature

8.7.2. ZV_REFILTER – Filtering

Type Feature

Description
The regions in the region list are filtered by a certain feature, and

the regions that meet the feature requirements are reserved.

Grammar

ZV_REFILTER(relist,feature,min,max,isInvert)

relist: ZVOBJECT type, which indicates the list of areas to

be filtered, list type

feature: the feature type of an area, please refer to

“ZV_RESORT”. The value can be -1

min: the lower limit of the feature value

max: the upper limit of the feature value

isInvert: whether to reverse the selection. If the value is 1,

the contour that is not in the range is retained.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reConnect

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

328

'calculate the connected area of the area

ZV_REFILTER(reConnect,0,1500,3000,0)

'filter regions in area list, and retain regions of 15000-3000,

then regions that are not in this range will be filtered.

8.7.3. ZV_REGETPTS – Region Point Set

Type Feature

Description
Convert region into point set, region means each pixel position

is converted into one coordinate point.

Grammar

ZV_REGETPTS (re, pts)

re: ZVOBJECT type, region

pts: ZVOBJECT type, matrix, a matrix of N rows 2 columns,

the first row is x coordinate, the second column is the y

coordinate.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, re, reBin, reconnect, pts

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,reBin,0,100) 'area binarization

ZV_RECONNECT(reBin,reConnect)

'calculate the connected area of the area

ZV_LISTGET (reconnect, re, 3)

 ‘get the element of No.3 in the list

ZV_REGETPTS(re, pts)

'output region in the form of point set

8.7.4. ZV_RESHAPETRANS – Region Transformation

Type Feature

329

Description Convert region into specified type.

Grammar

ZV_RESHAPETRANS (re, reTrains, type)

re: ZVOBJECT type, region, input parameter

reTrains: ZVOBJECT type, region, output parameter

type: region transformation type

0 Convex hull

1 The external moment of the parallel horizontal axis of

the minimum enclosed region

2 The rotational external moment of the minimum

enclosed region

3 Maximum internal moments surrounded by regions

(not supported now)

4 The circumscribed circle of the smallest enclosed

area.

5 The largest inner circle surrounded by the region.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, mask, re, reTrans

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_IMGINFO (img, 0) ‘get basic information of image

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,re,200,255) 'area binarization

ZV_RESHAPETRANS (re, reTrans, 0)

‘convert region to convex hull region

330

8.7.5. ZV_REAFFINE – Region Affine Transformation

Type Feature

Description
Affine and transform region to generate new region, like,

translate, rotate, zoom in and out region.

Grammar

ZV_REAFFINE (re, mat, reAffine)

re: ZVOBJECT type, region

mat: ZVOBJECT type, transform matrix, 2 rows 3 columns

reAffine: ZVOBJECT type, transformed region

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat img, dst, mask, re, reAffine

ZV_READIMAGE(img, "test.png", 0)

'read the picture in the original image format

ZV_IMGINFO (img, 0) ‘get basic information of image

ZV_REGENFULLIMG(img,mask)

 ‘generated region that covers the whole image

ZV_RETHRESH(img,mask,re,200,255) 'area binarization

TABLE (10, 1, 0.5, 0, 0, 1, 0) ‘save data into TABLE (10)

ZV_MATGENDATA (mat, 2, 3, 10)

‘transform matrix, miscut in the x direction

ZV_REAFFINE (re, mat, reAffine) ‘affine transform the region

331

Chapter VIIII Color

9.1. ZV_CLRGENMODEL – Generate Color Model

Type Segment

Description

Generate color model through threshold range, it supports RGB

and HSV color space.

H channel hue circle

Grammar

ZV_CLRGENMODEL(mod,name,colorType,low1,high1,low2,high

2,low3,high3)

mod: ZVOBJECT type, output, generated color model

name: mode name, character string, it can’t be empty, that

is, “”, or “?”.

colorType: color type, 0 – RGB, 1 – HSV

low1: low threshold, RGB: R channel, range [0, 255]. HSV: H

channel, range [0, 180].

high1: high threshold, RGB: R channel, range [0, 255]. HSV:

H channel, range [0, 180]. The H channel is a 360° hue ring, and

the parameters are expressed as 0-180. Due to the particularity

of parameter expression, high1 can be smaller than low1, which

means that it spans the interval near 180, that is, [low1,

332

high1+180].

low2: low threshold, RGB: G channel, range [0, 255]. HSV: S

channel, range [0, 255].

high2: high threshold, RGB: G channel, range [0, 255]. HSV:

S channel, range [0, 255].

low3: low threshold, RGB: B channel, range [0, 255]. HSV: V

channel, range [0, 255].

high3: high threshold, RGB: B channel, range [0, 255]. HSV:

V channel, range [0, 255].

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT clrMod

ZV_CLREGNMODEL (clrMod,"red",0,230,255,0,20,0,20)

 ‘generate red model from RGB

9.2. ZV_CLRGENMODELRE – Generate Color Model

Type Segment

Description Generate color model through training some image information.

Grammar

ZV_CLRGENMODELRE(img,mask,mod,name,colorType)

img: ZVOBJECT type, 3-channel image

mask: ZVOBJECT type, specify valid region “region” in

image that is used to generate color model, “region” can be

made by “region” command in Chapter VIII.

mod: ZVOBJECT type, output, generated color model

name: mode name, character string, it can’t be empty, that

is, “”, or “?”.

colorType: color type, 0 – RGB, 1 – HSV

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re, clrMod

ZV_READIMAGE (img, “test.png”, 0)

‘read image in the original form

ZV_REGENRECT(re,0,0,100,100)

333

ZV_CLREGNMODELRE (img, re, color_mod, “color”, 0)

 ‘generate color model from RGB

9.3. ZV_CLRGETMODELPARAM – Get Color Model

Parameters

Type Segment

Description Read color model’s parameters.

Grammar

ZV_CLRGETMODELPARAM(mod,maxLen,tabName,tabParam)

mod: ZVOBJECT type, color model

maxLen: name buffer size, the size should be appropriate, if

it is more than or less than model name, it will report an error.

tabName: the starting index of the TABLE where the model

name information is placed.

tabParam: the starting index of the TABLE where the model

parameter information is placed, and the TABLE space stores

color type and the low and high thresholds of each channel

sequentially, such as coloType, low1, high1, low2, high2, low3,

high3.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re, clrMod

ZV_READIMAGE (img, “test.png”, 0)

‘read image in the original form

ZV_REGENRECT(re,0,0,100,100)

ZV_CLREGNMODELRE (img, re, clrMod, “color”, 0)

‘generate color model from RGB

ZV_CLRGETMODELPARAM(clrMod,7,0,10)

 ‘get color parameter information

9.4. ZV_CLRMODELTHRESH – Color Binarization

Type Segment

334

Description
Use color model to binarize RGB image and then generate the

region.

Grammar

ZV_CLRMODELTHRESH(mod,img,mask,region)

mod: ZVOBJECT type, color model or color model list, for

performance, the colors in the color list must be the same

img: ZVOBJECT type, 3-channel RGB image

mask: ZVOBJECT type, needed “region”, assign the region

in img to be binarized, when mask is NULL, the whole image is

valid.

region: ZVOBJECT type, output region

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, clrMod, mask, reBin, tmp1, tmp2

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_IMGINFO(img,0) 'get basic information of image

ZV_CLRGENMODEL(clrMod,"color",0,143,255,136,255,143,255)

'generate color template

ZV_REGENFULLIMG(img,mask)

'generate an area covering the entire image

ZV_CLRMODELTHRESH(clrMod,img,mask,reBin)

'color binarization

ZV_RETOIMG(reBin,tmp1,TABLE(0), TABLE(1))

'region to binary image

ZV_IMGCOPY(tmp1,tmp2) 'assignment image

ZV_IMGSETCONST(tmp2,255) 'constant fill image

ZV_ABSDIFF(tmp2,tmp1,dst,1)

'image difference ZV_IMGCOPY(tmp1,tmp2)

ZV_IMGSETCONST(tmp2,255)

ZV_ABSDIFF(tmp2,tmp1,dst,1)

335

9.5. ZV_CLRMODELCLASSIFY – Color Classification

Recognition

Type Segment

Description

Use the color model list to identify the colors in the area, that is,

one certain color in the region matches with color list the most.

If the recognition fails, "?" will be output to indicate that it cannot

be recognized.

Grammar

ZV_CLRMODELCLASSIFY (colorList, img, mask, maxLen,

tab_name, tabId,score)

colorList: ZVOBJECT type, color model list

img: ZVOBJECT type, 3-channel RGB image

mask: ZVOBJECT type, needed “region”, specify the img

image to be identified, it cannot be empty.

maxLen: the maximum length of the output parameter

tab_name TABLE that can be used

tab_name: color name, output parameters, TABLE index, the

index that stores color, name, and parameters.

tabId: color id, output parameter, TABLE index, parameter

index for storing color id

score: recognition score. If the recognition score is less

than the given score, the recognition fails and the output result

is "?", otherwise the color name is output normally.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask, clrMod, clrList

ZV_READIMAGE(img, "test.png", 0)

'read the image in the original image format

ZV_REGENRECT(mask,0,0,100,100)

ZV_CLRGENMODEL(clrMod,"red",0,230,255,0,20,0,20)

ZV_LISTINSERT(clrMod, clrListt,-1)

ZV_CLRMODELCLASSIFY(colorList,img,mask,10,0,20,80)

'color recognition

336

337

Chapter X Contour

Contour, as a type of visual variable ZVOBJECT, its type is 4 (which can be viewed by

the ZV_TYPE command). It is a data structure that can store a series of point sets, which

can be divided into pixel contours and sub-pixel contours.

And there are three properties of contour:

Property 1: segmentation, curve type (not segmented, usually the contours are

extracted directly from the image), line type and arc type, indicating whether the contour

has been divided by the division operator, please refer to ZV_CONTSEGMENT.

Property 2: multilateral shape, indicating whether the contour is a polygon, that is,

whether the contour point set is a continuous dense point set, and the continuous dense

point set is non-polygons, then non-continuous sparse point sets are polygons, such as

the property of those contours that are processed by polygon approximation

“ZV_CONTAPPROXPOLY” is a polygon.

Property 3: closed and non-closed. Therefore, some contour commands can only be

used on objects with specific properties.

Property 1

Curve type Contours extracted from the image or processed by the parallel

expansion command.

Line type The contour is segmented by the segmentation operator, and

contour point set can be replaced by line segments under a certain

accuracy.

Arc type The contour is segmented by the segmentation operator, and

contour point set can be replaced by arc segments under a certain

accuracy.

Property 2

Polygon The point set is non-continuous and sparse, with fewer point sets

and fast processing speed.

Non-polygon The point set is continuous and dense, with many point sets and

slow processing speed.

338

Property 3

Closed The starting point and end point of the outline are the same or the

distance is less than 1 pixel.

Non-closed It is opposite to “closed”.

10.1. Contour

10.1.1. ZV_CONTGEN – Generate Contour

Type Contour

Description

Extract the contour of the foreground target in the binary image,

that is, the boundary of the white part. The foreground of binary

image is the white part of the image, so the extracted contour is

a closed contour that surrounds the white part. If the image

boundary is also the foreground, the boundary will also be

extracted as a contour.

Note: If there are more noise or burrs at the edge of the image

contour, it can combine the image morphology processing

operator to remove them, such as, opening operation or closing

operation, then extract the contour.

Grammar

ZV_CONTGEN(img,contlist,mode,appro)

img: ZVOBJECT type, single-channel 8U type, binarization

image

contlist: ZVOBJECT type, list type, output, multiple contours

are stored into the list, and the property of the contour depends

on parameter “appro”.

mode: contour extracting method: 0: external contour, that

is, inside contour surrounded by external contour will be filtered,

only external contour will be retained, 1: all contours

appro: contour expression method: 0: point set, the contour

is expressed by a series of point set, 1: concise, the contour is

also expressed by a series of point set, but horizontal, vertical

and diagonal are simplified as two terminals, it is recommended

339

to use 0. When appro is 0, the property contlist is curve type and

non-polygon type. When appro is 1, the property contlist is curve

type and polygon type.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, img_bw, dst, contlist, con_src

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,img_bw,200,255) 'image binarization

ZV_CONTGEN(img_bw,contlist,1,0)

'save all the found contours into the contour list

ZV_IMGCOPY(img,dst) 'copy the image

ZV_IMGSETCONST(dst,0) 'constant fill image

ZV_CONTLIST(dst,contlist,255,0) 'draw contour

10.1.2. ZV_CONTGENEX – Generate Contour

Type Contour

Description

Extract the contour of the foreground target in the ROI assigned

range of binary image, that is, the boundary of the white part.

The foreground of binary image is the white part of the image,

so the extracted contour is a closed contour that surrounds the

white part. And ROI can’t exceed image range, otherwise, it will

report an error.

Note: If there are more noise or burrs at the edge of the image

contour, it can combine the image morphology processing

operator to remove them, such as, opening operation or closing

operation, then extract the contour.

340

Grammar

ZV_CONTGENEX (img, contlist, mode, appro, cx, cy, width, height,

angle)

img: ZVOBJECT type, single-channel 8U type, binarization

image

contlist: ZVOBJECT type, list type, output, multiple contours

are stored into the list, and the property of the contour depends

on parameter “appro”.

mode: contour extracting method: 0: external contour, that

is, inside contour surrounded by external contour will be filtered,

only external contour will be retained, 1: all contours

appro: contour expression method: 0: point set, the contour

is expressed by a series of point set, 1: concise, the contour is

also expressed by a series of point set, but horizontal, vertical

and diagonal are simplified as two terminals, it is recommended

to use 0. When appro is 0, the property contlist is curve type and

non-polygon type. When appro is 1, the property contlist is curve

type and polygon type.

cx: ROI center x coordinate

cy: ROI center x coordinate

width: ROI width

height: ROI height

angle: ROI angle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

10.1.3. ZV_CONTGENSUBPIX– Sub-Pixel Contour

Type Contour

Description

Sub-pixel edge contour extraction uses the canny edge

detection algorithm with hysteresis threshold to extract the sub-

pixel edge contour of the specified region in the image. If the

gradient of the edge contour point is greater than the high

threshold, it must be a contour, and if it is less than low, it must

not be a contour. If it is between low and high and connected to

341

the contour edge points are also considered contour points, the

extracted contour may not be in the clockwise direction (under

the image coordinate system). If you need to check the contour

direction, please use the ZV_CONTDIRECT command.

Note: If there are more noise or burrs at the edge of the image

contour, it can combine the image morphology processing

operator to remove them, such as, opening operation or closing

operation, then extract the contour.

Grammar

ZV_CONTGENSUBPIX(img, region, contlist, low, high, minLen)

img: ZVOBJECT type, source-gray image, single-channel

8U type

region: ZVOBJECT type, extract valid region of contour, that

is, the image assigned by “region” will be extracted, when

“region” is empty, entire image contour is extracted.

contlist: ZVOBJECT type, list type, output, multiple contours

are stored into the list, the contour property is curve type and

non-polygon type.

low: low threshold for hysteresis threshold, (0, 255]

high: high threshold for hysteresis threshold, (0, 255], > low

minLen: the minimal contour length, which means

extracted contour is ≥ minContLen

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, re, contlist

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_REGENRECT(re, 263, 336, 114, 109)

‘generate rectangle region

ZV_CONTGENSUBPIX(img, re, contlist, 80, 200, 30)

 ‘extract the minimal edge contour of 30 from valid region,

342

and save the result into list

ZV_IMGCOPY(img,dst) 'copy the image

ZV_IMGSETCONST(dst,0) 'constant fill image

ZV_CONTLIST(dst,contlist,255,0) 'draw contour

10.1.4. ZV_CONTGAUSSIAN– Contour Gaussian

Smoothing

Type Contour

Description
To do gaussian smoothing for contour, it can smooth obtrusive

points in the contour.

Grammar

ZV_CONTGAUSSIAN(src,dst,size)

src: ZVOBJECT type, input, it only supports non-polygon

property and any contours of other properties.

dst: ZVOBJECT type, output, the property is curve type and

non-polygon type.

size: the size of gaussian, the size is bigger, the smoothing

is obvious, and it is not negative, 3, 5 and 7 are recommended,

the default value is 3. If 1 is filled, output contour and input

contour are the same.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, imgBw, dst, contList, contSrc, contDst

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,0,0)

343

'store all found outer contours in the contour list

contCnt= ZV_LISTCOUNT(contList)

'get the number of contour lists

ZV_IMGCOPY(img,dst) 'copy image

ZV_IMGSETCONST(dst,0) 'constant fill image

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList, contSrc,i) 'get a certain contour

ZV_CONTGAUSSIAN(contSrc,contDst,3)

'use a Gaussian filter with a Gaussian kernel size of 3

to smooth the contour and stores the result in con_dst

ZV_CONTOUR(dst,contDst,255) 'draw the contour

NEXT

10.1.5. ZV_CONTAPPROXPOLY – Polygon Approximation

Type Contour

Description

Polygonal approximation of a contour or list of contours, that is,

dividing the contour into lines with a certain accuracy, then the

polygon formed by these line segments can approximate the

contour very well.

Grammar

ZV_CONTAPPROXPOLY(src,dst,eps)

src: ZVOBJECT type, contour or contour list, input

dst: ZVOBJECT type, contour or contour list, output,

properties are curve and polygon, please note that although the

point set becomes sparse after approximation, it is still defined

as a curve property.

eps: the accuracy of contour segmentation. The smaller the

segmentation accuracy, the more polygon line segments will be

segmented, and the closer the polygon is to the contour,

common values are 1, 1.5, and 2, eps is a floating point number

greater than or equal to 0, and when the parameter is set to 0, it

means that the input is equal to the output.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

344

Example

ZVOBJECT img, dst, imgBw, contSrc, contDst

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,150,255) 'image binarization

ZV_CONTGEN(imgBw,conSrc,1,0) 'generate the contour

ZV_CONTAPPROXPOLY(contSrc, conDst, 1)

 ‘to do polygon approximation for contour or contour list src

to generate dst

ZV_IMGCOPY(img,dst) 'copy image

ZV_IMGSETCONST(dst,0) 'constant fill image

ZV_CONTLIST,contDst,255,0) 'draw the contour

10.1.6. ZV_CONTGENPARALLEL – Generate Parallel

Contour

Type Contour

Description

Generate a new parallel contour that expands or shrinks in a

certain distance from the input contour. If the input contour

processes polygonal approximation through

ZV_CONTAPPROXPOLY, parallel or inward processing will be

faster. And the contour point set processed by the command

may become non-continuous, but the number of point sets is

the same as the input.

Grammar

ZV_CONTGENPARALLEL(src,dst,dist)

src: ZVOBJECT type, input, 2 contour points at least

dst: ZVOBJECT type, output, property 1 is curve type, other

attributes are the same as input

dist: expansion or contraction distance, the unit of distance

345

is consistent with the unit of contour point, positive value is

parallel expansion, negative value means parallel contraction.

When it is 0, the output contour is the same as the input contour.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, dst, imgBw, contList, contSrc, contDt

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,150,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0) 'generate contour

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

ZV_IMGCOPY(img,gray) 'copy image

ZV_IMGSETCONST(gray,0) 'constant fill image

ZV_GRAYTORGB(gray,dst)

'convert grayscale image to color image

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList, conSrc,i) 'get a certain contour

ZV_CONTOUR(dst,conSrc,ZV_COLOR(0,255,0))

'draw the original image contour as green

ZV_CONTGENPARALLEL(conSrc,conDst,5)

 ‘generate a new contour extending parallel to the input

contour by a distance of 5

ZV_CONTOUR(dst,conDst,ZV_COLOR(255,0,0))

'draw parallel contours in red

NEXT

346

10.1.7. ZV_CONTSETMAXRADIUS – Set Max Arc Radius

Type Contour

Description

Set the maximum radius when the contour is divided into arc

primitives. Arcs larger than the maximum radius will not be

divided into arc segments, but will be divided into multiple

straight-line segments. And use it with the ZV_CONTSEGMENT

instruction.

Grammar

ZV_CONTSETMAXRADIUS(radius)

 radius: max main axis’ radius, range is (0, 16383], the

default value is 1000

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZV_CONTSETMAXRADIUS(1000)

‘set the max radius is 1000 for the arc

10.1.8. ZV_CONTSEGMENT – Contour Segment

Type Contour

Description

Divide a continuous curved contour into segments of small

primitives such as straight lines and arcs.

Primitive element: one small contour segment that can be fitted

with a straight line under a given accuracy is called a straight-

line primitive, and the same rule for arc and ellipse primitive. A

primitive is also a segment of contour, such as the segmentation

property of a line primitive is line type. Therefore, contour

segmentation produces a series of primitives, and these

primitives are stored in the list for outputting.

The contour segmentation command can usually be used in

conjunction with the Gaussian smoothing command

ZV_CONTGAUSSIAN. Gaussian smoothing can smooth contour

points with large jitters to a certain extent, thereby segmenting

the contours more smoothly.

347

Grammar

ZV_CONTSEGMENT(cont,list,type,eps1,eps2)

cont: ZVOBJECT type, input, it only supports non-polygonal

property contour, or when segment type “type” is 0, the contour

that is polygon is supported.

list: ZVOBJECT type, list type, output, segmented primitives

are stored into the list.

type: segment type, the type of primitive that is segmented

by contour, 0 and 1 are used most. 0: line, 1: line or arc

eps1: the accuracy of polygon approximation, that is, the

accuracy of dividing a curve outline into small line segments.

The smaller the accuracy value, the more accurate it will be for

subsequent outline primitives such as arc segmentation.

Commonly used values are 1, 1.5, 2, and the recommended value

is 1.

eps2: the accuracy of merging polygonal contours into

primitives. For example, the accuracy of fitting a certain contour

into an arc. That is, the accuracy of fitting this contour into an

arc is less than or equal to eps2. Then this contour is

represented by arc primitives, and the common value is 1, 1.5, 2,

eps2 should be greater than or equal to eps1.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, img_bw, dst, contlist, contlist_seg, con_src

DIM con_count

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,img_bw,150,255) 'image binarization

ZV_CONTGEN(img_bw,contlist,1,0) 'generate contour

ZV_CONTSETMAXRADIUS(1000)

'set the maximum radius of the arc to 1000

348

con_count = ZV_LISTCOUNT(contlist)

'get the number of contour lists

ZV_IMGCOPY(img,dst) 'copy image

ZV_IMGSETCONST(dst,0) 'constant fill image

FOR i = 0 TO con_count-1

ZV_LISTGET(contlist, con_src,i) 'get a certain contour

ZV_CONTSEGMENT(con_src,contlist_seg,1,1,1)

'split the contour into straight line and arc primitives

ZV_CONTLIST(dst,contlist_seg,255,0) 'draw contour

NEXT

10.1.9. ZV_CONTGETPARAM – Contour Primitive

Geometric Parameters

Type Contour

Description

Obtain the geometric parameters of the contour segmentation

primitive. If the straight-line primitive can be replaced by a

straight-line segment, then its geometric parameters are the

coordinates of the two terminals of the straight-line segment.

For the arc primitive, it is the center point, radius, starting point,

midpoint, and end point. The direction of the arc primitive from

the starting point to the end point is clockwise.

Grammar

ZV_CONTGETPARAM (cont, len, tabId)

cont: ZVOBJECT type, input

len: store the buffer length of geometric primitive

parameters

tabId: output geometric primitive parameters, they are type,

param1, param2, param3…, that is, segment type and primitive

parameter, and primitive parameter is related to contour type,

type is shown below:

type Primitive parameter

-1 Curve: no parameters output, this contour is not

segmented

0 Line primitive: stx, sty, endx, endy

349

1 Arc primitive: cx, cy, radius, stx, sty, midx, middy,

endx, endy

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i=0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTGETPARAM(cont,5,0)

'get the contour type and geometric primitive

parameters

NEXT

10.1.10. ZV_CONTUNIONADJ -- Neighbor Contour

Connection

Type Contour

Description

Connect contours that are close to terminal. If the current

contour can be connected to multiple contours, the closest

contour will be considered first. If the distance between multiple

contours is the same, the longest contour will be considered

first. The output contours are all clockwise.

Grammar

ZV_CONTUNIONADJ(src,dst,mode,maxDist)

src: ZVOBJECT type, list type, input, contours with polygon

property are not supported

dst: ZVOBJECT type, list type, output, same as input

350

property

mode: 1-the first and end points are taken into

consideration, that is, the connection will occur only when the

distance between the current contour terminal and the terminal

of another contour is less than the distance between the start

and end points of another contour. 0-do not detect the start and

end points, mode 0 is recommended.

maxDist: the maximum distance between two contours that

satisfies the closest connection.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re, dst, contSrc, contDst

ZV_READIMAGE(img, "test.bmp",0)

'read the image in the original image format

ZV_REGENRECT(re,211,175,247,197)

'generate a rectangular area

ZV_CONTGENSUBPIX(img,re,contSrc,40,50,35)

'generate sub-pixel contours

ZV_CONTUNIONADJ(contSrc,contDst,1,70)

'neighbor contour connection

ZV_GRAYTORGB(img,dst)

'convert grayscale image to color image

ZV_CONTLIST(dst,contDst,ZV_COLOR(0,255,0),0)

'draw the contour

10.1.11. ZV_CONTCLOSE – Close Contour

Type Contour

Description
Forcibly close the contour, even if the first and last points are

different or the distance is greater than or equal to 1, the

351

property still will be modified as closed.

Grammar

ZV_CONTCLOSE(cont,isClose)

cont: ZVOBJECT type, input is also output, the property is

closed, other properties remain unchanged

isClose: 1-contour closed, 0-contour not closed

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i=0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTCLOSE(cont,1) 'set contour closure

NEXT

10.1.12. ZV_CONTCLOSEEX – Close Contour

Type Contour

Description
Closing the contour will increase the number of contour points

by one so that the end point is the same as the first point.

Grammar

ZV_CONTCLOSEEX(src, dst)

src: ZVOBJECT type, input

dst: ZVOBJECT type, output, property is closed, others are

the same

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
DIM contCnt

ZVOBJECT img, imgBw, contList, contSrc, contDst

352

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i=0 TO contCnt-1

ZV_LISTGET(contList,contSrc,i) 'get a certain contour

ZV_CONTCLOSEEX(contSrc, contDst) ‘close the contour

and get a new closed contour

NEXT

10.2. Access

10.2.1. ZV_CONTCOUNT – Contour Numbers

Type Access

Description

It is used to get the number of contour points.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_CONTCOUNT (count, tabId) / count = ZV_CONTCOUNT (cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, the number of points

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM ptCnt, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

353

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList, cont,i) 'get a certain contour

ptCnt = ZV_CONTCOUNT(cont)

'get the number of contour points

? ptCnt 'print the number of contour points

NEXT

10.2.2. ZV_CONTGETPT – Contour Point Traversal

Type Access

Description It is used to get the coordinate of assigned point in contour.

Grammar

ZV_CONTGETPT (count, idx, tabId)

cont: ZVOBJECT type, contour

idx: index “idx” of assigned point, idx of the first point is 0

tabId: TABLE index, output parameter, obtained point’s

coordinate x, y

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM ptCnt, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contCnt, cont,i) 'get a certain contour

ptCnt = ZV_CONTCOUNT(cont)

'get the number of contour points

354

FOR j = 0 TO ptCnt -1

ZV_CONTGETPT(cont,j,0)

'put the point coordinates in the contour into TABLE (0)

? *TABLE(0,2) 'print coordinates

NEXT

NEXT

10.3. Geometric Analysis

10.3.1. ZV_CONTRECT – External Rectangle

Type Geometric analysis

Description

External rectangle of contour that is parallel with coordinate

axis.

Grammar

ZV_CONTRECT(cont, tabId)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, external rectangle of

contour, the output is in order of x, y, width, height, that is, the

coordinate of the upper left corner of the rectangle, and width

and height.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
DIM contCnt

ZVOBJECT img, imgBw, cont, contList

355

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTRECT(cont,0)

'contour circumscribed rectangle, shape parameters

are stored in TABLE(0) in turn

? *TABLE(0,4) 'print parameters

NEXT

10.3.2. ZV_CONTRECT2 – Minimal External Rectangle

Type Geometric analysis

Description

Enclosing matrix of the minimum area of the contour.

Grammar

ZV_CONTRECT2(cont, tabId)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, the smallest

enclosing rectangle of contour, the output is in order of cx, cy,

width, height, angle, that is, the coordinate of the center the

rectangle, the width and height of the rectangle, and the rotate

356

angle of the rectangle.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTRECT2(cont,0)

'contour minimum enclosing rectangle, parameters are

stored in TABLE(0)

?*TABLE(0,5) 'print parameters

NEXT

10.3.3. ZV_CONTELLIPAXIS – Feature Ellipse Parameters

Type Geometric analysis

Description

Calculate feature ellipse parameters of contour.

Grammar

ZV_CONTELLIPAXIS(cont, tabId)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, calculated feature

357

ellipse parameters, they are majorLen, minorLen, angle in order,

that is, the ellipse main axis’s length, minor axis length, the angle

of main axis and horizontal axis.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTELLIPAXIS(cont,0)

'feature ellipse parameters are stored in TABLE(0)

?*TABLE(0,3) 'print parameters

NEXT

10.3.4. ZV_CONTCIRCLE – External Circle

Type Geometric analysis

Description

Calculate contour’s external circle.

358

Grammar

ZV_CONTCIRCLE(cont, tabId)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, calculate external

circle parameters, the output is in order of cx, cy, radius, that is,

the coordinate x, y of the circle center, circle radius.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTCIRCLE(cont,0)

'external circle parameters are stored in TABLE(0)

?*TABLE(0,3) 'print parameters

NEXT

10.4. Feature

10.4.1. ZV_CONTAREA – Area (Spare)

Type Feature

Description

Calculate contour area.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

359

Grammar

ZV_CONTAREA (cont, isOrient, tabId) / area = ZV_CONTAREA

(cont, isOrient)

cont: ZVOBJECT type, contour

isOrient: whether to set the direction, the storage direction

of contour point set that is viewed surface is the storage order.

If the parameter is set to 0, the absolute value of the area will be

output, and if it is 1, the signed area will be output. The area

divided into positive and negative indicates the storage order of

the contour point set. A positive area means that the contour

point set is stored in a clockwise direction, and a negative area

means that the contour point set is stored in a counterclockwise

direction.

tabId: TABLE index, output parameter, area of contour

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM area, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

area = ZV_CONTAREA(cont,0) 'calculate contour’s area

?*area 'print parameters

NEXT

10.4.2. ZV_CONTLENGTH – Perimeter

Type Feature

Description Calculate contour length.

360

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_CONTLENGTH (cont, tabId) / len = ZV_CONTLENGTH (cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, length of contour

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM len, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

len = ZV_CONTLENGTH (cont,0)

'calculate contour’s perimeter

?*len 'print parameters

NEXT

10.4.3. ZV_CONTCENTER – Center of Gravity

Type Feature

Description Calculate the center of gravity.

Grammar

ZV_CONTLCENTER (cont, tabId)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, calculate the

coordinate x and y of center of gravity.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example DIM contCnt

361

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTCENTER (cont,0)

'calculate contour’s center coordinates and save it into

TABLE (0)

?TABLE(0) 'print parameters

NEXT

10.4.4. ZV_CONTISCONVEX – Convex

Type Feature

Description

Judge whether the contour is convex.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_CONTISCONVEX (cont, tabId) / convex =

ZV_CONTISCONVEX (cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, whether the contour

is convex.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt, convex

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

362

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

convex = ZV_CONTISCONVEX (cont)

'calculate contour’s convex

? convex 'print parameters

NEXT

10.4.5. ZV_CONTCONVEXITY – Convexity

Type Feature

Description

Calculate contour’s convexity.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

The contour’ area / the area of convex related to region

That is: if Fc is the area of convex, Fo is the original area of the

region, then, the convexity C will be: C = Fo / Fc.

Grammar

ZV_CONTCONVEXITY (cont, tabId) / convex =

ZV_CONTCONVEXITY (cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, calculate contour’s

convexity, [0,1], the bigger value, the convex the contour

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
DIM contCnt, convex

ZVOBJECT img, imgBw, cont, contList

363

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

convex = ZV_CONTCONVEXITY (cont)

'calculate contour’s convexity

? convex 'print parameters

NEXT

10.4.6. ZV_CONTCCLTY – Circularity

Type Feature

Description

Calculate contour’s circularity.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

The circularity indicates how similar is between contour and

circle. Assume that F is the area of the region, max is the

maximum distance from center to all contour pixels, then the

circularity C is defined as:

Grammar

ZV_CONTCCLITY (cont, tabId) / circular = ZV_CONTCCLTY (cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, calculate contour’s

circularity, the bigger value, the circular the contour

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM circular, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

364

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

circular = ZV_CONTCCLTY (cont)

'calculate contour’s circularity

? circular 'print parameters

NEXT

10.4.7. ZV_CONTCMPTNS – Compactness

Type Feature

Description

Calculate contour’s compactness, C*C/(4*PI*S), S means

contour area, C means contour length.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Assume that L is the length of the contour, F is the area of the

region, then the compactness C is defined as:

Grammar

ZV_CONTCMPTNS (cont, tabId) / compact = ZV_CONTCMPTNS

(cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, calculate contour’s

compactness, [0,1], the bigger value, the compact the contour

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM compact, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

365

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

compact = ZV_CONTCMPTNS (cont)

'calculate contour’s compactness

? compact 'print parameters

NEXT

10.4.8. ZV_CONTRECTLY – Rectangularity

Type Feature

Description

Calculate contour’s rectangularity.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_CONTRECTLY (cont, tabId) / rectlity = ZV_CONTRECTLITY

(cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, the rectangularity of

the contour, [0,1], the bigger value, the rectangular the contour

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM rectlity, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

366

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

rectlity = ZV_CONTCMPTNS (cont)

'calculate contour’s rectangularity

? rectlity 'print parameters

NEXT

10.4.9. ZV_CONTHULLAREA – Hull Area

Type Feature

Description

Calculate contour’s hull area.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_CONTHULLAREA (cont, tabId) / area = ZV_CONTHULLAREA

(cont)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, calculate the hull

area.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM area, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

area = ZV_CONTHULLAREA (cont)

'calculate contour’s hull area

? area 'print parameters

367

NEXT

10.4.10. ZV_CONTDIRECT – Contour Direction

Type Feature

Description
Judge contour’s direction, that is, from starting point to end

point.

Grammar

ZV_CONTDIRECT (cont, tabId)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, contour’s direction, -

1: clockwise, 0: shared or uncountable, 1: anticlockwise, under

image coordinate system.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM rectlity, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTDIRECT (cont,0)

'calculate contour’s direction

? TABLE 'print parameters

NEXT

10.4.11. ZV_CONTORIENT – Contour Orientation

Type Feature

368

Description Judge contour’s orientation.

Grammar

ZV_CONTORIENT (cont, tabId)

cont: ZVOBJECT type, contour

tabId: TABLE index, output parameter, main axis’s angle,

clockwise is positive, [-180° , 180°)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM angle, contCnt

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTORIENT (cont,0)

'calculate contour’s orientation

? TABLE 'print parameters

NEXT

10.5. Transformation

10.5.1. ZV_CONTREVERSE – Contour Reverse

Type Transformation

Description
Reverse contour’s direction, that is, covert it from clockwise into

anticlockwise.

369

Grammar

ZV_CONREVERSE (src, dst)

src: ZVOBJECT type, input contour

dis: ZVOBJECT type, output contour

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM contCnt

ZVOBJECT img, imgBw, contList, contSrc, contDst

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

contCnt = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO contCnt-1

ZV_LISTGET(contList,cont,i) 'get a certain contour

ZV_CONTREVERSE (conSrc, conDst)

'change contour’s direction

NEXT

10.5.2. ZV_CONTSORT – Sorting

Type Feature

Description Sorting contour list according to “feature”.

Grammar

ZV_CONTSORT (list, feature, isInc)

list: ZVOBJECT type, contour list to be sorted, list type

feature: sorted feature type, please see below form

isInc: whether is the ascending order, 0 means descending

order, otherwise is the ascending order.

0 Area 17 External rectangle height

1 Gravity X 18 External rectangle x + w

2 Gravity Y 19 External rectangle y + h

3 Angle 20 External rectangle h / w

4 Perimeter, length 21 Min rectangle center X

370

5 Circularity 22 Min rectangle center Y

6 Compactness 23 Min rectangle width

7 Rectangularity 24 Min rectangle height

8 Convexity 25 Min rectangle angle

9 -- 26 Min rectangle h / w

10
Equivalent elliptic main

axis length
27 -

11
Equivalent elliptic slave

axis length
28 -

12
Equivalent elliptic main

axis angle
29 -

13
Equivalent elliptic main

axis / slave axis
30 Convex

14 External rectangle x 31 Convex hull area

15 External rectangle y 32 Area with sign

16 External rectangle width

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_CONTSORT (contList, 0, 0) ‘sorting for contour’s area feature

ZV_LISTGET(contList,cont,i) 'get the first contour from contour

list and save it into contour

10.5.3. ZV_CONTFILTER -- Filter

Type Feature

Description
Filter contours in contour list at one certain feature, and remain

contours that meet feature.

371

Grammar

ZV_CONTFILTER (list, feature, min, max, isInvert)

list: ZVOBJECT type, contour list that is to be filtered, list

type

feature: contour feature type. Refer to “sorting”.

min: lower limit of feature value

max: higher limit of feature value

isInvert: whether to be inverse, if it is 1, contours that are

not in the range will be retained, the default value is 0.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, imgBw, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_CONTFILTER (contList, 0, 500, 300000, 0)

 ‘filter contours in contour list, remain contours that are

with area of 500-300000, that is, others are filtered.

ZV_IMGCOPY ‘copy image

ZV_IMGSETCONST (dst, 0) ‘constant fills in image

ZV_CONTLIST (dst, contList, 255, 0) ‘draw the contour

10.5.4. ZV_CONTAFFINE – Contour / Contour List Affine

Transformation

Type Transformation

Description Affine transform all points of contour of contour list.

372

Grammar

ZV_CONTAFFINE (src, matrix, dst)

 src: ZVOBJECT type, contour or contour list before

transformation

matrix: ZVOBJECT type, transform matrix, 2 rows and 3

columns or 3 rows and 3 columns

dst: ZVOBJECT type, contour or contour list after

transformation

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM conCnt

ZVOBJECT img, imgBw, dst, matAffine, contListSrc, contListDst

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

TABLE (0, 1, 0.2, 0, 0, 1, 0) ‘save data into TABLE (10)

ZV_MATGENDATA (matAffine, 2, 3, 0)

‘transform matrix, in x direction

ZV_CONTAFFINE (contListSrc, matAffine, contListDst)

 ‘affine transform for contour or contour list

ZV_IMGCOPY ‘copy image

ZV_IMGSETCONST (dst, 0) ‘constant fills in image

ZV_CONTLIST (dst, contList, 255, 0) ‘draw the contour

373

Chapter XI Recognition

11.1. Data Code

Data code includes one dimensional code (bar code) and two-dimensional code.

11.1.1. ZV_CODEMASKBAR – Mask of Manufacture Bar

Code Type

Type Data code

Description
Generate the mask of bar type that is to be recognized, that is,

bar type in mask format to be recognized.

Grammar

ZV_CODEMASKBAR(ean8,ean13,code39,code128,upca,upce,ta

bId)

 ean8: positive integer, non-zero means EAN-8 barcode type

can be recognized

ean13: positive integer, non-zero means EAN-13 barcode

type can be recognized

code39: positive integer, non-zero means CODE-39

barcode type can be recognized

code128: positive integer, non-zero means CODE-128

barcode type can be recognized

upca: positive integer, non-zero means UPC-A barcode type

can be recognized

upce: positive integer, non-zero means UPC-E barcode type

can be recognized

tabId: save generated mask

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_CODEMASKBAR (0, 1, 0, 0, 0, 0, 0)

‘generate the mask that recognizes ean13 barcode type and

save the mask into TABLE (0).

374

11.1.2. ZV_CODEREAD – Read Data Code

Type Data code

Description Read data code, including barcode and OR code recognition.

Grammar

ZV_CODEREAD(img, codeRst, type, step)

Img: ZVOBJECT type, input single-channel image

codeRst: ZVOBJECT type, list type, save all recognized data

codes into list, and use ZV_LISTGET command to get one certain

data code result.

type: the type of reading data code, EAN-8, EAN-13, CODE-

39, UPC-A, UPC-B, QR, DM, etc.:

--

0: automatic type, all types of barcodes except QR and DM

codes can be recognized

1: EAN-8 type. EAN-8 barcode is a shortened version of

EAN-13. It is mainly used on smaller products such as pens. The

character set is [0-9], consisting of 8 digits. Digits 1-3 are

country code (for example, China is 690-699), 4-7 digits are the

product code, and the 8th digit is the check code to verify

whether the decoding is correct and for anti-counterfeiting.

2: EAN-13 type, EAN-13 barcode is a globally accepted

commodity barcode type. The character set is [0-9], consisting

of 13 digits. 1-3 digits are country codes (for example, China is

690-699), 4- the 7th digit is the manufacturer code assigned by

the country, the 8th to 12th digit is the product code assigned

by the manufacturer, and the 13th digit is the check code to

verify whether the decoding is correct and for anti-

counterfeiting. EAN-13 is longer than EAN-8, so EAN-13 is more

applicable. EAN-13 is compatible with UPC-A.

375

3: CODE-39 type, CODE-39 code is also called Kudba 39

code. It is a variable-length barcode type that can encode data

of any length. Its limitation is the product length and the

recognition range of the barcode reader. Its character set

consists of 44 characters, character set [0-9,cA-Z,-, empty cell,

$, /, +, %, *, ;]. Among them, black is the bar and white is the

space. One character of the CODE-39 code is composed of 9

units (5 bars and 4 spaces). There are 3 wide units and the rest

are narrow units, so it is called CODE-39 code. CODE-39 codes

are mainly used in business management, logistics tracking,

postal services, medical and health care, industrial production

lines, library and information and other fields.

4: CODE-128 type, CODE-128 code is similar to CODE-39, it

is also a variable-length barcode type that can encode data of

any length. Its limitation also lies in the product length and the

recognition range of the barcode reader, but it is a high-density

encoding, within the same length area, CODE-128 encodes more

data than CODE-39 and has richer data content. Its character

set consists of 128 ASCII codes, so it is called CODE-128 code.

Like CODE-39, CODE-128 is also mainly used in business

management, logistics tracking, postal services, medical and

health care, industrial production lines, library and information

and other fields.

376

5: UPC-A type, UPC-A barcode is similar to EAN-13 and is

also a general commodity barcode type, but it is mainly used in

the United States and Canada. The character set is [0-9],

consisting of 12 digits, and the first digit is the system code, 2-

6 digits are the manufacturer code, 7-11 digits are the product

code, and the 12th digit is the check code to verify whether the

decoding is correct and for anti-counterfeiting. UPC-A is longer

than UPC-E, so UPC -A is more applicable, UPC-A is compatible

with EAN-13.

6: UPC-E type. UPC-E is a shortened version of UPC-A. It is

mainly used for small products with a smaller area. The

character set is [0-9] and consists of 8 digits. The first digit is

the system code, and the 2-7 digit are the product code, the 8th

digit is the check code to verify whether the decoding is correct

and for anti-counterfeiting.

20: QR type, the "QR" of QR code is the abbreviation of Quick

Response, which means that this QR code can be read quickly.

377

It can store rich information including text, URL address and

other types of data. It is usually used on product packaging.

21: DM type, the "DM" of DM code is the abbreviation of

Data Matrix, which is usually used on product packaging.

--

step: scanning step size, a positive integer. The larger the

step size, the faster it will be but it will affect the recognition

accuracy. It is usually 4.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM rstStr(64)

ZVOBJECT img, codeList, codeRst

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_CODEREAD(img,codeList,2,4)

'recognize the EAN-13 barcode and store the result in the list

378

ZV_LISTGET(codeList,codeRst,0) 'get the first result in the list

ZV_CODESTR(codeRst,64,0)

'get the result and store it in TABLE(0)

DMCPY rstStr(0),TABLE(0),64 'copy the array of TABLE to rstStr

? rstStr 'print recognition result: 0123456789012

11.1.3. ZV_CODESTR – Get Data Code Result

Type Data code

Description Get data code result, and output in character string method.

Grammar

ZV_CODESTR (code, maxLen, tabId)

code: data code read by ZV_CODEREAD, ZVOBJECT type

maxLen: the maximum acceptable length of the data code

string result

tabId: TABLE index, output parameter, starting position of

obtained data code result in character string

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM rstStr(64)

ZVOBJECT img, codeList, codeRst

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_CODEREAD(img,codeList,2,4)

'recognize the EAN-13 barcode and store the result in the list

ZV_LISTGET(codeList,codeRst,0) 'get the first result in the list

ZV_CODESTR(codeRst,64,0)

'get the result and store it in TABLE(0)

DMCPY rstStr(0),TABLE(0),64 'copy the array of TABLE to rstStr

? rstStr 'print recognition result: 0123456789012

11.1.4. ZV_CODESTR – Get Data Code Type

Type Data code

379

Description
Get data code type, and output in value method, such as, EAN-

13 barcode type, output the value 2.

Grammar

ZV_CODETYPE(code, tabId)

code: data code read by ZV_CODEREAD, ZVOBJECT type

tabId: TABLE index, output parameter

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, codeList, codeRst

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_CODEREAD(img,codeList,2,4)

'recognize the EAN-13 barcode and store the result in the list

ZV_LISTGET(codeList,codeRst,0) 'get the first result in the list

ZV_CODETYPE(codeRst, 0)

'get the result and store it in TABLE(0)

?TABLE (0) ‘print data code type

11.1.5. ZV_CODETYPESTR – Get Data Code Type

Type Data code

Description
Get data code type, output in character string, such as, EAN-13

barcode type, output “EAN-13” in character string.

Grammar

ZV_CODETYPESTR(code, maxLen, tabId)

code: data code read by ZV_CODEREAD, ZVOBJECT type

maxLen: the maximum acceptable length of the data code

string result

tabId: TABLE index, starting position of obtained data code

result in character string

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM rstStr(64)

ZVOBJECT img, codeList, codeRst

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

380

ZV_CODEREAD(img,codeList,2,4)

'recognize the EAN-13 barcode and store the result in the list

ZV_LISTGET(codeList,codeRst,0) 'get the first result in the list

ZV_CODETYPESTR(codeRst, 64, 0)

'get the result and store it in TABLE(0)

DMCPY rstStr(0),TABLE(0),64 'copy the array of TABLE to rstStr

? rstStr ‘print data code type

11.1.6. ZV_CODEPOS – Get Data Code Position

Type Data code

Description Get data code position.

Grammar

ZV_CODEPOS(code, tabId)

code: data code read by ZV_CODEREAD, ZVOBJECT type,

please note this command only can read QR position.

tabId: TABLE starting index that saves data code position,

they are the coordinates of the upper left, upper right, lower right,

and lower left vertices of the rectangle are in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, codeList, codeRst

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_CODEREAD(img,codeList,2,4)

'recognize the EAN-13 barcode and store the result in the list

ZV_LISTGET(codeList,codeRst,0) 'get the first result in the list

ZV_CODETYPESTR(codeRst, 0)

'get the result and store it in TABLE(0)

? *TABLE (0, 4) ‘print data code type

381

11.2. OCR

OCR (Optical Character Recognition) is used to recognize characters. First, it needs to

segment a single character from the image, and then trains it to learn the features. Finally,

the newly segmented character is used to find the character with the highest similarity in

the training library based on its features as the recognition object.

11.2.1. ZV_OCRSEGSETPARAM – Set Segment

Parameters

Type OCR

Description Set character segment parameters.

Grammar

ZV_OCRSEGSETPARAM (param, threshMode, thresh, minArea,

maxArea, minWidth, maxWidth, minHeight, maxHeight, polor,

morpType, stWidth, stHeight, minSpace)

param: segment parameter, ZVOBJECT type, output

threshMode: threshold mode, 0 – manual threshold, 1 –

automatic threshold, 2 – adaptive threshold

thresh: threshold, this relates to threshold mode:

threshMode thresh

0

Low threshold segmented by image

binarization, at this time, high threshold

defaults to 255.

1 Parameters are invalid.

2

The size of block of adaptive threshold,

positive odd number, that is, in pixel area,

calculate area size of threshold.

minArea: minimum area of characters, non-negative

maxArea: maximum area of characters, non-negative

minWidth: minimum character width, non-negative number

maxWidth: maximum character width, non-negative

minHeight: minimum height of characters, non-negative

maxHeight: maximum height of characters, non-negative

polar: character polarity, 0-black text on white background,

382

1-white text on black background

morphType: morphological type, 0-open operation, 1-

closed operation

stWidth: structure element width, non-negative number

stHeight: Structure element height, non-negative number

minSpace: the minimum spacing between characters. Two

characters smaller than this spacing are considered to be the

part of the same character. A negative value is invalid, that is,

the spacing parameter does not work when dividing characters.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT param

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

11.2.2. ZV_OCRSEGCHAR – Character Segment

Type OCR

Description
To do character segmentation for image in ROI, and save all

segmented characters into character sample.

Grammar

ZV_OCRSEGCHAR(img, param, sample, cx, cy, width, height,

angle)

img: single-channel image

param: ZVOBJECT type, segment parameters, generate by

ZV_OCRSEGSETPARAM

sample: ZVOBJECT type, obtained segmented character

sample library, there are many samples in sample library, that is,

character information, such as, character image, character

name, etc., and segmented character name are “?”.

cx: roi center x coordinate

cy: roi center y coordinate

width: roi width

height: roi height

angle: roi angle

383

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample

ZV_READIMAGE (img, “test.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

 ‘character segmentation

11.2.3. ZV_OCRSAMPLEAPP – Generate Training Sample

Type OCR

Description
Use sample library and sample name set to generate sample

library that is used to train features.

Grammar

ZV_OCRSAMPLEAPP (sample, trainSample, sampleName)

sample: sample library, ZVOBJECT type

trainSample: train sample library, ZVOJECT type, output

parameter, if trainSample has been generated, then add new

sample

sampleName: character string, input parameter, each

sample name is separated by space, and the number of sample

name must be consistent with the number of input samples.

When sample names are single-character, space can be

omitted, but at this time, character string length should be equal

to sample numbers, otherwise fail to train samples.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, trainSample

ZV_READIMAGE (img, “train.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

384

 ‘character segmentation

ZV_OCRSAMPLEAPP (sample, trainSample, “A B C D E”)

 ‘generate training sample, there are 5 samples in

“sample”.

11.2.4. ZV_OCRCREATESVM – Create SVM Classifier

Type OCR

Description Create OCR classifier that supports vector machine (SVM).

Grammar

ZV_OCRCREATESVM (ocr)

 ocr: ocr classifier, ZVOBJECT type, output parameter, used

to classify characters.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT ocr

ZV_OCRCREATESVM (ocr) ‘create OCR classification

11.2.5. ZV_OCRTRAINSVM – Train SVM Classifier

Type OCR

Description
Use sample library to train SVM classifier, and the sample library

must be generated by ZV_OCRSAMPLEAPP command.

Grammar

ZV_OCRTRAINSVM (sample, ocr [, eps = 0.001])

sample: sample library, ZVOBJECT type, input parameter

ocr: ocr classifier, ZVOBJECT type, output parameter, used

to classify characters

eps: training precision, when precision is reached, training

ends. When it is more than 0, the default value is 0.001, when it

is 0, the value 0.001 is used. The smaller the precision, the longer

the training.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT img, param, sample, trainSample, ocr

385

ZV_READIMAGE (img, “train.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

 ‘character segmentation

ZV_OCRSAMPLEAPP (sample, trainSample, “A B C D E”)

 ‘generate training sample, there are 5 samples in

“sample”.

ZV_OCRCREATESVM (ocr) ‘create OCR classification

ZV_OCRTRAINSVM (trainSample, ocr, 0)

‘train classifier that supports SVM

11.2.6. ZV_OCRCLASSIFYSVM – SVM Classification

Recognition

Type OCR

Description

Use SVM classifier to classify and recognize characters in

sample library, and then output results. Each sample’s names as

the recognized result are saved into charlist.

Grammar

ZV_OCRCLASSIFYSVM(ocr,sample,maxLen,tabId)

ocr: classifier, ZVOBJECT type, input

sample: character sample library, ZVOBJECT type, input

maxLen: the maximum TABLE space length that can be

used to store the recognition result tabId

tabId: TABLE starting index where recognition results are

stored, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, trainSample, ocr

ZV_READIMAGE (img, “sample.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

386

ZV_OCRSEGCHAR (test_img, param, sample, 320, 340, 120, 80,

0) ‘character segmentation

ZV_OCRCREATESVM (ocr) ‘create OCR classification

ZV_OCRCLASSIFYSVM (ocr, sample, 32, 0)

‘recognize characters in sample library and save them

into TABLE (0)

11.2.7. ZV_OCRCREATEMLP – Create MLP Classifier

Type OCR

Description Create Neural Network (MLP) OCR classifier.

Grammar

ZV_OCRCREATEMLP (ocr, neuNum)

ocr: ocr classifier, ZVOBJECT type, output parameters, used

to classify characters

neuNum: the number of hidden layer neurons, >=3. In most

applications, a small setting will provide better classification

results. If the setting is too large, the MLP classifier may overfit

the training data and then may be with poor generalization

ability. For example, the classification effect on data that has

been trained is very good, but the classification effect on

unknown data is relatively poor.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT ocr

ZV_OCRCREATEMLP (ocr, 3)

‘create a MLP classifier that has 3 neurons

11.2.8. ZV_OCRTRAINMLP – Train MLP Classifier

Type OCR

Description
Use sample library to train MLP classifier, and the sample library

must be generated by ZV_OCRSAMPLEAPP command.

387

Grammar

ZV_OCRTRAINMLP (sample, ocr [, eps = 0.001])

sample: sample library, ZVOBJECT type, input parameter

ocr: ocr classifier, ZVOBJECT type, output parameter, used

to classify characters

eps: training precision, when precision is reached, training

ends. When it is more than 0, the default value is 0.001, when it

is 0, the value 0.001 is used. The smaller the precision, the longer

the training.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, trainSample, ocr

ZV_READIMAGE (img, “train.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

 ‘character segmentation

ZV_OCRSAMPLEAPP (sample, trainSample, “A B C D E”)

 ‘generate training sample, there are 5 samples in

“sample”.

ZV_OCRCREATEMLP (ocr, 3)

‘create the MLP classifier that has 3 neurons

ZV_OCRTRAINMLP (trainSample, ocr, 0)

‘train MLP classifier

11.2.9. ZV_OCRCLASSIFYMLP – MLP Classification

Recognition

Type OCR

Description

Use MLP classifier to classify and recognize characters in

sample library, and then output results. Each sample’s names as

the recognized result are saved into charlist.

388

Grammar

ZV_OCRCLASSIFYMLP (ocr, sample, score, maxLen, tabId)

ocr: classifier, ZVOBJECT type, input

sample: character sample library, ZVOBJECT type, input

score: recognize score, if the score is not met, “?” will be

output, the range is [0, 100].

maxLen: the maximum TABLE space length that can be

used to store the recognition result tabId

tabId: TABLE starting index where recognition results are

stored, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, trainSample, ocr

ZV_READIMAGE (img, “sample.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_OCRCREATEMLP (ocr, 3)

‘create the MLP classifier that has 3 neurons

ZV_OCRCLASSIFYMLP (ocr, sample, 90, 32, 0)

‘recognize characters in sample library and save them

into TABLE (0)

11.2.10. ZV_OCRSAMPLEDEL – Delete Sample

Type OCR

Description
Delete one certain sample from sample library according to

sample name.

Grammar

ZV_OCRSAMPLEDEL (sample, sampleName)

sample: sample library, ZVOBJECT type

sampleName: character string, sample name

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

389

Example

ZVOBJECT img, param, sample, trainSample

ZV_READIMAGE (img, “train.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_OCRSAMPLEAPP (sample, trainSample, “A B C D E”)

 ‘generate training sample, there are 5 samples in

“sample”.

ZV_OCRSAMPLEDEL (sample, “A”)

‘delete sample’s name A from sample library

11.2.11. ZV_OCRSAMPLECOUNT – Get Sample Numbers

Type OCR

Description Get the number of samples in sample library.

Grammar

ZV_OCRSAMPLECOUNT (sample, tab_num)

sample: sample library, ZVOBJECT type

sample_num: TABLE index that saves the number of

samples

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, trainSample

ZV_READIMAGE (img, “train.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_OCRSAMPLEAPP (sample, trainSample, “A B C D E”)

 ‘generate training sample, there are 5 samples in

“sample”.

ZV_OCRSAMPLECOUNT (trainSample, 0)

390

‘get the number of samples and save it into TABLE (0)

11.2.12. ZV_OCRSAMPLEIMG – Get Sample Image

Type OCR

Description Get sample image of specified position in sample library.

Grammar

ZV_OCRSAMPLEIMG (sample, img, id)

sample: sample library, ZVOBJECT type

img: sample image, ZVOBJECT type, output

id: id No., used to specify sample at assigned position in

sample library

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, dst, sample, sample

ZV_READIMAGE (img, “train.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_OCRSAMPLEIMG (sample, dst, 0)

‘get the sample image that is in the first position in

sample library

11.2.13. ZV_OCRSAMPLENAME – Get Sample Name

Type OCR

Description Get sample name of specified position in sample library.

Grammar

ZV_OCRSAMPLENAME (sample, id, maxLen, tabId)

sample: sample library, ZVOBJECT type

id: id No., used to specify sample at assigned position in

sample library

maxLen: the maximum TABLE space length that can be

391

used to store the recognition result tabId

tabId: TABLE starting index where recognition results are

stored, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, trainSample

ZV_READIMAGE (img, “train.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_OCRSAMPLEAPP (sample, trainSample, “A B C D E”)

 ‘generate training sample, there are 5 samples in

“sample”.

ZV_OCRSAMPLENAME (trainSample, 0, 10, 0)

 ‘get the sample image that is in the first position in

sample library, and save its name into TABLE (0)

11.2.14. ZV_OCRCLASSCOUNT – Get Classification

Numbers

Type OCR

Description Get the number of classification.

Grammar

ZV_OCRCLASSCOUNT (ocr, tabId)

ocr: ocr classifier, ZVOBJECT type

tabId: TABLE index that saves classification numbers

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, ocr

ZV_READIMAGE (img, “sample.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

392

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_SCRCREATESVM (ocr) ‘create OCR classification

ZV_OCRCLASSIFYSVM (ocr, sample, 32, 0)

 ‘recognize characters in sample library, and save

results into TABLE (0)

ZV_OCRCLASSCOUNT (ocr, 0)

 ‘get the number of classified types and save it into

TABLE (0)

11.2.15. ZV_OCRCLASSTONAME – Get Class Name of

Specified No.

Type OCR

Description Get the name of classified type in assigned id No. of classifier.

Grammar

ZV_OCRCLASSTONAME (ocr, id, maxLen, tabId)

ocr: ocr classifier, ZVOBJECT type

id: classification id No. in classifier, > 0, < the number of

total classified types

maxLen: the maximum TABLE space length that can be

used to store the recognition result tabId

tabId: TABLE starting index where recognition results are

stored, output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, ocr

ZV_READIMAGE (img, “sample.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_SCRCREATESVM (ocr) ‘create OCR classification

393

ZV_OCRCLASSIFYSVM (ocr, sample, 32, 0)

 ‘recognize characters in sample library, and save

results into TABLE (0)

ZV_OCRCLASSTONAME (ocr, 0, 10, 0)

 ‘get the first one classified type’s name in ocr classifier,

and save it into TABLE (0)

11.2.16. ZV_OCRCLASSTOID – Get No. of Classified Name

Type OCR

Description Get the id No. of classified type’s name in ocr classifier.

Grammar

ZV_OCRCLASSTOID (ocr, name, tabId)

ocr: ocr classifier, ZVOBJECT type, input parameter

name: classification name, character string

tabId: TABLE index that saves id, output parameter

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, param, sample, ocr

ZV_READIMAGE (img, “sample.png”, 0)

‘read image in the original format

ZV_OCRSEGSETPARAM (param, 0, 120, 20, 30000, 3, 500, 3,500,

0, 0, 3, 3, -1) ‘set character’s segment parameters

ZV_OCRSEGCHAR (img, param, sample, 320, 340, 120, 80, 0)

‘character segmentation

ZV_SCRCREATESVM (ocr) ‘create OCR classification

ZV_OCRCLASSIFYSVM (ocr, sample, 32, 0)

 ‘recognize characters in sample library, and save

results into TABLE (0)

ZV_OCRCLASSTOID (ocr, “A”, 0)

 ‘get the sequence number of the category named A in

the ocr recognizer and store it in TABLE(0)

394

11.2.17. ZV_OCRSAMPLERECT2 – Get Sample Rectangle

Type OCR

Description
Get the bounding rectangle of sample with specified id No. in

sample library.

Grammar

ZV_OCRSAMPLERECT2 (sample, id, tabId)

sample: sample library, ZVOBJECT type

id: the sample ID serial number in the sample library, > 0, <

the total number of samples

tabId: TABLE starting index that stores sample bounding

moment parameters, output parameters, the output order is cx,

cy, width, height, angle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_OCRSAMPLERECT2 (sample, 0, 0)

'get the 0th sample surrounding moment in the sample

library and store it in the TABLE (0)

395

Chapter XII List

List, as a type of visual variable ZVOBJECT, its type is 5 (it can be viewed by the

ZV_TYPE command). It is a data structure that can store other visual variables.

Lists are divided into special lists and ordinary lists, and the use of each list has

certain restrictions.

➢ Special List:

Special lists include contour lists, area lists, etc., and support operations such as

sorting, filtering, size, and element acquisition of the list, but do not support editing of the

list (i.e., modifying the size of the list itself, including inserting and deleting the list, etc.).

Elements obtained from special list (ZV_LISTGET) cannot be inserted into the general list.

If an insertion operation is required, copying or other operations that can create new

variables are required, otherwise an error will be reported.

➢ General list:

General lists support operations such as insertion, deletion, list size, and element

acquisition. They cannot perform sorting, filtering, and resetting (deprecated) operations

for special lists. Elements can be inserted directly into variables. If the original variable is

not a list, it will be released and reconstructed into an ordinary list and the insertion

operation will be performed. If the original variable is an ordinary list, it will be inserted

directly.

The elements obtained by general lists and special lists are references to elements

in the list, so modifying the obtained elements will also modify the elements in the list

synchronously, such as: ZV_LISTGET(lost, elem, 0), ZV_CLEAR(elem), then the data of

variable elem will be cleared and the zero element of the list will also be cleared. However,

when it is reconstructed as an output variable, the operation will not be passed to the list.

For example, if ZV_IMGCOPY (img, elem) is executed above, the variable elem will be

changed to a copy of the image img, but the list elements will not be changed.

Note: inserting an element into a special list will also cause the list to be freed and

restructured into a general list, with the number of elements after insertion being 1.

396

12.1. Access

12.1.1. ZV_LISTCOUNT – Element Numbers

Type Access

Description

Get the number of elements in list.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_LISTCOUNT (list, tabId) / count = ZV_LISTCOUNT (list)

list: ZVOBJECT type, list

tabId: TABLE index, output parameter, the number of

elements

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM count

ZVOBJECT list

count = ZV_LISTCOUNT(list) ‘get the number of elements in list

12.1.2. ZV_LISTCOUNT – Element Numbers

Type Access

Description

Get the element of specified id No. in list, the element belongs to

zvobject type.

Note: what is obtained is the reference of the element. Modifying

the obtained element will also modify the elements in the list,

but the variable of the obtained element is used as an output

parameter to dereference it.

Grammar

ZV_LISTGET (list, obj, id)

list: ZVOBJECT type, list

obj: ZVOJECT type, obtained element object

id: id of specified element, starting from 0

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

397

Example
ZVOBJECT list, obj

ZV_LISTGET (list, obj, 0) ‘get element of No.0 in list

12.2. Insert & Delete

12.2.1. ZV_LISTINSERT – Insert Element

Type Insert & delete

Description Insert the element into list.

Grammar

ZV_LISTINSERT (list, obj, pos)

list: ZVOBJECT type, list

obj: ZVOJECT type, element to be inserted

pos: position where element-inserting is, default value is -

1, which means inserting element at the end of list

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT list, obj

ZV_LISTINSERT (obj, list, -1)

‘insert one element at the end of the list

12.2.2. ZV_LISTDELETE – Delete Element

Type Insert & delete

Description Delete elements at specified position in list.

Grammar

ZV_LISTDELETE (list, pos)

list: ZVOBJECT type, list

pos: position where the element is deleted, default value is

-1, which means that deleting element at the end of list

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT list

398

ZV_LISTDELETE (list, -1)

‘delete one element at the end of the list

12.2.3. ZV_LISTEXTEND – Extend Element

Type Insert & delete

Description

Expand and combine lists list1 and list2 into a list and output

the combined list as list2. The extended combination method is

to put the elements in list1 into list2 in sequence, and reset list2.

Grammar

ZV_LISTEXTEND (list1,list2)

list1: ZVOBJECT type, list, input parameters

list2: ZVOBJECT type, list, both input and output parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT list1, list2

ZV_LISTEXTEND(list1,list2)

'expand and combine lists list1 and list2, and output

the combined list as list2

12.2.4. ZV_LISTREPLACE – Replace Element

Type Insert & delete

Description Replace element at specified position in list.

Grammar

ZV_LISTREPLACE (elem, list[,idx=-1])

 elem: ZVOBJECT type, element to be replaced

list: ZVOBJECT type, list, both input and output parameters

idx: the position of the element to be replaced, the default -

1 means replacing the element at the end of list

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT elem, list

ZV_LISTREPLACE(elem,list,-1)

'replace the tail element of the list with elem

399

12.2.5. ZV_LISTSLICE – Slice Element

Type Insert & delete

Description Get sub list in list.

Grammar

ZV_LISTSLICE(list,seq,stidx[,num=-1])

list: ZVOBJECT type, list, input list

seq: ZVOBJECT type, list, sub-list

stidx: the starting position of the sub-list in the list

num: the number of sub-lists, default -1, indicating the

number from the starting position to the end position

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT list,seq

ZV_LISTSLICE(list,seq,5,-1)

'get a sub-lis t seq from position 5 to the end of the list

400

Chapter XIII Tool

13.1. Geometry

13.1.1. ZV_DISTPP – Distance of Point and Point

Type Geometry

Description Calculate distance between two points.

Grammar

dist = ZV_DISTPP (x1, y1, x2, y2)

x1: coordinate x of the first one point

y1: coordinate y of the first one point

x2: coordinate x of the second one point

y2: coordinate y of the second one point

returned value:

 dist: distance between two points

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM dist

dist = ZV_DISTPP (100, 100, 200, 200)

‘returned value is the distance between two points

13.1.2. ZV_DISTPL – Distance of Point and Line

Type Geometry

Description Calculate distance between point and line.

Grammar

dist = ZV_DISTPL (px, py, 1x1, 1y1, 1x2, 1y2)

px: coordinate x of the point

py: coordinate y of the point

1x1: coordinate x of the first one point of the line

1y1: coordinate y of the first one point of the line

1x2: coordinate x of the second one point of the line

1y2: coordinate y of the second one point of the line

returned value:

401

 dist: distance from the point to line

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM dist

dist = ZV_DISTPL (10, 10, 100, 100, 200, 200)

‘returned value is the distance from point to line

13.1.3. ZV_DISTPS – Distance of Point and Segment

Type Geometry

Description Calculate distance between point and segment.

Grammar

dist = ZV_DISTPS (px, py, 1x1, 1y1, 1x2, 1y2)

px: coordinate x of the point

py: coordinate y of the point

1x1: coordinate x of the first one point of the segment

1y1: coordinate y of the first one point of the segment

1x2: coordinate x of the second one point of the segment

1y2: coordinate y of the second one point of the segment

returned value:

 dist: distance from the point to segment

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM dist

dist = ZV_DISTPS (10, 10, 100, 100, 200, 200)

‘returned value is the distance from point to segment

13.1.4. ZV_DISTSL – Distance of Segment and Line

Type Geometry

Description
Calculate minimal and maximal distance between segment and

line.

Grammar
ZV_DISTSL(lsx1,lsy1,lsx2,lsy2,lx1,ly1,lx2,ly2,tab_dist)

lsx1: coordinate x of segment point 1

402

lsy1: coordinate y of segment point 1

lsx2: coordinate x of segment point 2

lsy2: coordinate y of segment point 2

lx1: coordinate x of line point 1

ly1: coordinate y of line point 1

lx2: coordinate x of line point 2

ly2: coordinate y of line point 2

tab_dist: TABLE index, output parameters, minimal

distance and maximal distance in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_DISTSL(10, 10, 20, 20, 0, 0, 30, 0, 0)

 ‘calculate minimal and maximal distance from

segment to line and save them into TABLE (0).

13.1.5. ZV_DISTSS – Distance of Segment and Segment

Type Geometry

Description
Calculate minimal and maximal distance between two

segments.

Grammar

ZV_DISTSS(ls1x1,ls1y1,ls1x2,ls1y2,ls2x1,ls2y1,ls2x2,ls2y2,tab_

dist)

ls1x1: coordinate x of segment 1 point 1

ls1y1: coordinate y of segment 1 point 1

ls1x2: coordinate x of segment 1 point 2

ls1y2: coordinate y of segment 1 point 2

ls2x1: coordinate x of segment 2 point 1

ls2y1: coordinate y of segment 2 point 1

ls2x2: coordinate x of segment 2 point 2

ls2y2: coordinate y of segment 2 point 2

tab_dist: TABLE index, output parameters, minimal

distance and maximal distance in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

403

Example

ZV_DISTSS(10, 10, 20, 20, 0, 0, 30, 0, 0)

 ‘calculate minimal and maximal distance from

segment 1 to segment 2 and save them into TABLE (0).

13.1.6. ZV_DISTCONTP – Min Distance of Point and

Contour

Type Geometry

Description

Calculate the minimal distance from point to contour, that is, the

distance of point and the closest point of contour.

Online command function is supported, using parameters that

don’t need to pass in TABLE index.

Grammar

ZV_DISTCONTP (cont, px, py, tabId) / number = ZV_DISTCONTP

(cont, px, py)

cont: ZVOBJECT type, contour

px: coordinate x of point

py: coordinate y of point

tabId: TABLE index, output parameter, distance from point

to contour, negative value means the point is outside the

contour, then positive means the point is inside the contour, 0

means point is on the contour.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_LISTGET(contList,cont,0) 'get the first contour

ZV_DISTCONTP(cont,10,10,0) 'put the distance “cont” from

the point to the contour in TABLE(0).

404

13.1.7. ZV_DISTCONTPEX – Min Distance of Point and

Contour

Type Geometry

Description

Calculate the minimal distance from point to contour, that is, the

distance of point and the closest point of contour, output

distance and corresponding contour point.

Grammar

ZV_DISTCONTPEX (cont, type, px, py, tabId)

cont: ZVOBJECT type, contour

type: distance type, 0: distance to contour node, 1: distance

to contour line

px: coordinate x of point

py: coordinate y of point

tabId: TABLE index, output parameter. minDist, x, y, are

output in order, that is, min distance, corresponding contour

coordinates.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_LISTGET(contList,cont,0) 'get the first contour

ZV_DISTCONTPEX(cont,0,10,10,0)

'calculate minimal distance from point (10,10) to

contour, and output and save distance and

corresponding coordinates into TABLE (0)

13.1.8. ZV_DISTCONT – Min Distance of Two Contours

Type Geometry

405

Description
Calculate the minimal distance of two contours, and output two

contours’ corresponding points when in minimal distance.

Grammar

ZV_DISTCONTPEX (cont, type, px, py, tabId)

cont: ZVOBJECT type, contour

type: distance type, 0: distance to contour node, 1: distance

to contour line

px: coordinate x of point

py: coordinate y of point

tabId: TABLE index, output parameter. minDist, x, y, are

output in order, that is, min distance, corresponding contour

coordinates.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, imgBw, cont, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_LISTGET(contList,cont,0) 'get the first contour

ZV_DISTCONTPEX(cont,0,10,10,0)

'calculate minimal distance from point (10,10) to

contour, and output and save distance and

corresponding coordinates into TABLE (0)

13.1.9. ZV_INTERSECTLL – Straight Line Intersection

Type Geometry

Description
Calculate intersection point of two straight lines, and return

whether they intersect or not.

Grammar

is_intersect=ZV_INTERSECTLL(x11,y11,x12,y12,x21,y21,x22,y2

2,tabId)

x11: coordinate x of the first point of straight line 1

y11: coordinate y of the first point of straight line 1

406

x12: coordinate x of the second point of straight line 1

y12: coordinate y of the second point of straight line 1

x21: coordinate x of the first point of straight line 2

y21: coordinate y of the first point of straight line 2

x22: coordinate x of the second point of straight line 2

y22: coordinate y of the second point of straight line 2

tabId: TABLE index, calculated results are coordinate x,

coordinate y in order

is_intersect: whether straight lines intersect, 0: straight

lines are parallel, no intersection point. 1: straight lines are

intersected.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM is_intersect

is_intersect=ZV_INTERSECTLL(100,100,200,200,30,30,60,60,0)

'calculate the intersection point of two straight lines and put

the intersection coordinates x and y into the TABLE(0), and

return is_intersect to check whether the straight lines

intersect.

13.1.10. ZV_INTERSECTSS – Segment Intersection Point

Type Geometry

Description
Calculate intersection point of two segments, and return

whether they intersect or not.

Grammar

isIntersect=ZV_INTERSECTSS(x11,y11,x12,y12,x21,y21,x22,y22,

tabId)

x11: coordinate x of the first point of segment 1

y11: coordinate y of the first point of segment 1

x12: coordinate x of the second point of segment 1

y12: coordinate y of the second point of segment 1

x21: coordinate x of the first point of segment 2

y21: coordinate y of the first point of segment 2

x22: coordinate x of the second point of segment 2

407

y22: coordinate y of the second point of segment 2

tabId: TABLE index, calculated results are coordinate x,

coordinate y in order

isIntersect: whether segments intersect, 0: segments are

parallel, no intersection point. 1: segments are intersected.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM isIntersect

isIntersect=ZV_INTERSECTSS(100,100,200,200,30,30,60,60,0)

'calculate the intersection point of two segments and put

the intersection coordinates x and y into the TABLE(0), and

return isIntersect to check whether segments intersect.

13.1.11. ZV_PROJECTPL – Projection of Point on the

Straight Line

Type Geometry

Description
Calculate foot point of point on the straight line or the projection

of point on the straight line.

Grammar

ZV_PROJECTPL(px,py,lx1,ly1,lx2,ly2,tabId)

Alias: ZV_INTERSECTPL

px: coordinate x of the point

py: coordinate y of the point

1x1: coordinate x of the first point of straight line 1

1y1: coordinate y of the first point of straight line 1

1x2: coordinate x of the second point of straight line 1

1y2: coordinate y of the second point of straight line 1

tabId: TABLE index, calculated results are coordinate x,

coordinate y in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_PROJECTPL(10,20,100,100,200,200,0)

‘foot point coordinates x, y of point 10,20 on the straight line

are put into TABLE (0)

408

13.1.12. ZV_PROJECTPC – Projection of Point and Circle

Type Geometry

Description
Calculate the projection from the point to circle, and the

projection point locates on the circle that closes to point most.

Grammar

ZV_PROJECTPC(px,py,cx,cy,radius,tabId)

Alias: ZV_INTERSECTPL

px: coordinate x of the point

py: coordinate y of the point

cx: coordinate x of the center

cy: coordinate y of the center

radius: center radius

tabId: TABLE index, projection point coordinates, they are

coordinate x, coordinate y in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_PROJECTPC(100, 100, 320, 240, 30, 0)

‘calculate the projection from point to circle, and save

results into TABLE (0)

13.1.13. ZV_PROJECTPE – Projection of Point and Ellipse

Type Geometry

Description
Calculate the projection from the point to ellipse, and the

projection point locates on the circle that closes to ellipse most.

Grammar

ZV_PROJECTPE(px,py,cx,cy,ra,rb,angle,tabId)

px: coordinate x of the point

py: coordinate y of the point

cx: coordinate x of the ellipse

cy: coordinate y of the ellipse

ra: major semi-axis of ellipse

rb: minor semi-axis of ellipse

angle: the angle between the long axis and the horizontal

direction, unit degree, range (-180, 180]

409

tabId: TABLE index, projection point coordinates, they are

coordinate x, coordinate y in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_PROJECTPE(100, 100, 320, 240, 30, 20, 0, 0)

‘calculate the projection from point to ellipse, and save

results into TABLE (0)

13.1.14. ZV_RECT2VERTEX – Rotate Rectangular Vertex

Type Geometry

Description
Calculate four vertexes’ coordinates of rotate rectangle, the

direction is clockwise.

Grammar

ZV_RECT2VERTEX(cx,cy,w,h,angle,tabId)

cx: coordinate x of the rotate rectangle

cy: coordinate y of the rotate rectangle

w: length of rotate rectangle in the x direction

h: length of rotate rectangle in the y direction

angle: rotate rectangular angle

tabId: TABLE index, output parameters, save rectangular

vertex coordinates x, y, x, y in order and in the clockwise.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_RECT2VERTEX(20,20,100,100,60,0)

‘output rotate rectangular vertex coordinates x, y

(clockwise) into TABLE

13.1.15. ZV_INTERSECTRECT2 – Vertex of Rotate

Rectangle Intersection Area

Type Geometry

Description Calculate vertex’s coordinates of two rotate rectangles in

410

intersection are.

Grammar

ZV_INTERSECTRECT2(pts, r1x, r1y, r1w, r1h, r1Angle, r2x, r2y,

r2w, r2h, r2Angle)

pts: rectangle type, output parameter, N rows 2 columns,

calculate vertex’s coordinate

r1x: the center of coordinate x of the first rotate rectangle

r1y: the center of coordinate y of the first rotate rectangle

r1w: the length of the first rotate rectangle in x direction

r1h: the length of the first rotate rectangle in y direction

r1Angle: the angle of the first of rotate rectangle

r2x: the center of coordinate x of the second rotate

rectangle

r2y: the center of coordinate y of the second rotate

rectangle

r2w: the length of the second rotate rectangle in x direction

r2h: the length of the second rotate rectangle in y direction

r2Angle: the angle of the second of rotate rectangle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT pts

ZV_INTERSECTRECT2(pts, 20,20,100,100,60,20,20,100,100,0)

 ‘output vertexes’ coordinates of rotate rectangles in

intersection area

13.1.16. ZV_ANGLELL – Straight Line Angle

Type Geometry

Description Calculate angle of straight line 1 and straight line 2. (-180, 180]

Grammar

Angle = ZV_ANGLELL(x11,y11,x12,y12,x21,y21,x22,y22)

x11: the x coordinate of line 1 point 1

y11: the y coordinate of line 1 point 1

x12: the x coordinate of line 1 point 2

y12: the y coordinate of line 1 point 2

x21: the x coordinate of line 2 point 1

y21: the y coordinate of line 2 point 1

411

x22: the x coordinate of line 2 point 2

y22: the y coordinate of line 2 point 2

returned value:

 angle: angle, the unit is degree (deg), (-180, 180]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM angle

angle = zv_anglell(0,0,1,0,0,0,0,1)

‘calculate angle of line 1 and line 2

PRINT angle ‘print result is 90 degrees

13.1.17. ZV_ANGLELX – Angle of Line and Horizontal Axis

Type Geometry

Description
Calculate angle of straight line and x positive direction. (-180,

180], clockwise is positive.

Grammar

angle = ZV_ANGLELX(x1, y1, x2, y2)

x1: the x coordinate of line’s point 1

y1: the y coordinate of line’s point 1

x2: the x coordinate of line‘s point 2

y2: the y coordinate of line’s point 2

returned value:

 angle: angle, the unit is degree (deg), (-180, 180]

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM angle

angle = ZV_ANGLELX(0,0,1,1)

‘calculate angle of straight line and x positive direction

PRINT angle ‘print result is 45 degrees

13.1.18. ZV_ANGLEBISECT – Angle Bisector

Type Geometry

412

Description Calculate angle bisector of two straight lines.

Grammar

ZV_ANGLEBISECT(x1,y1,angle1,x2,y2,angle2,tabId)

x1: the x coordinate of line’s point 1

y1: the y coordinate of line’s point 1

angle 1: straight line 1’s angle, the unit is degree, image

coordinate system

x2: the x coordinate of line‘s point 2

y2: the y coordinate of line’s point 2

angle 2: straight line 2’s angle, the unit is degree, image

coordinate system

tabId: output parameter, TABLE index, linear parameter, x, y,

angle (degree)

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZV_ANGLEBISECT(0,0,0,0,0,90,0)

 ‘calculate angle bisector pf two lines and save them into

TABLE (0)

13.1.19. ZV_LINETOPARAM – From Line to Parameters

Type Geometry

Description

Convert the line represented by two points to the line

represented by parameters, that is, use another parameter form

to express the same one straight line.

Grammar

ZV_LINETOPARAM(x1, y1, x2, y2, tabId)

x1: the x coordinate of the first point of the line

y1: the y coordinate of the first point of the line

x2: the x coordinate of the second point of the line

y2: the y coordinate of the second point of the line

tabId: TABLE index, output line parameters, they are center

x, y, and angle of x positive direction, line length “len” in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZV_LINETOPARAM(0,0,1,0,0)

413

 ‘output line represented by parameters into TABLE (0), and

parameters are center x, y, angle (of x positive direction),

line length len.

13.1.20. ZV_LINEFROMPARAM – Parameters Construct

Line

Type Geometry

Description
Convert the line represented by the parameters to the line

represented by two points.

Grammar

ZV_LINEFROMPARAM(cx, cy, angle, len, tabId)

cx: the x coordinate of the center of the line

cy: the y coordinate of the center of the line

angle: angle of line and axis x, angle value

len: line length

tabId: TABLE index, output line points coordinates, they are

x1, y1, x2, y2

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZV_LINEFROMPARAM(20, 20, 30, 20, 0)

 ‘output line represented by two points into TABLE (0)

13.1.21. ZV_FITLINE – Line Fitting

Type Geometry

Description Use least squares to fit a straight line based on input points

Grammar

ZV_FITLINE(points,tabId[,method=0])

points: fitting point set, matrix type N rows and 2 columns,

one point in each row

tabId: TABLE index, output parameter, coordinates of two

points located on the fitting straight line

method: method of straight-line fitting.

0 - least squares, easy to be interfered by favorable

414

group points, it can be used for point clusters on a relatively

standard straight line, otherwise interference from

favorable group points will cause the fitted straight line to

be inaccurate.

1 - Ransac, the random sampling consistency principle

can remove outlier interference without affecting the

accuracy of the fitted line. It can be used when the

proportion of favorable points in the total point set is large,

such as 1/4 - 1/3, which is more time-consuming.

2 - iterative least squares, which can remove the

interference of favorable points without affecting the

accuracy of fitting straight lines. It can be used when the

proportion of favorable points in the total point

concentration is relatively small, such as less than 1/4,

which is more time-consuming.

The time-consuming situation of the three methods:

1 > 2 > 0. Usually, it is recommended to use 2.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT points

TABLE(0, 1, 1, 2, 2, 3, 3) 'save data into TABLE(0)

ZV_MATGENDATA(points,3,2,0) 'generate matrix by data

ZV_FITLINE(points,10)

'outputs the coordinates of the two endpoints of the

straight line. The coordinates are stored in the TABLE (0)

13.1.22. ZV_FITPOLYN – Polynomial Fitting

Type Geometry

Description Fit polynomial, order specifies “order” to be fitted.

Grammar

ZV_FITPOLYN(pts, order, tabId)

 pts: ZVOBJECT type, point set for fitting polynomials

order: order of fitting

tabId: TABLE index, output parameter order+1 polynomial

415

coefficients, fitting results, low-order terms first, such as

second-order polynomial fitting c+bx+ax2.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT points

TABLE(0, 1, 1, 2, 2, 3, 3) 'Save data into TABLE(10)

ZV_MATGENDATA(points,3,2,0)

ZV_FITPOLYN(points,1,10)

‘fit as a first-order polynomial, and the output results are 0

and 1, that is, y=x

13.1.23. ZV_ROTATEPOINT – Rotate Point

Type Geometry

Description Rotate one point around the center point.

Grammar

ZV_ROTATEPOINT(x,y,cx,cy,angle,tabId)

x: input coordinate x

y: input coordinate y

cx: coordinate x of the center point

cy: coordinate y of the center point

angle: rotate angle, the unit is degree, clockwise is positive,

image coordinate system

tabId: TABLE index, output parameters, coordinates of

rotate point, x, y in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZV_ROTATEPOINT(10,10,320,240,60,0)

'rotate point (10,10) 60 degrees around center (320,240)

13.1.24. ZV_PTSDIRECT – Calculate Direction of 3 Points

Type Geometry

Description Calculate continuous three points’ rotate direction.

416

Grammar

ret = ZV_PTSDIRECT (x1, y1, x2, y2, x3, y3)

x1: coordinate x of point 1

y1: coordinate y of point 1

x2: coordinate x of point 2

y2: coordinate y of point 2

x3: coordinate x of point 3

y3: coordinate y of point 3

return value:

 ret: direction, -1: clockwise, 0: shared line, 1: anticlockwise,

image coordinate system

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM ret

ret=ZV_PTSDIRECT(10,10,20,20,29,29)

'calculate the rotation direction of three consecutive points

13.1.25. ZV_RECT2INSIZE – Whether Rectangle’s Vertex

Are in Range

Type Geometry

Description
Judge whether 4 vertexes of rectangle are in the given right

rectangle size or not.

Grammar

ret = ZV_RECT2INSIZE(width,height,cx,cy,w,h,angle)

width: right rectangle width

height: right rectangle height

cx: coordinate x of center point

cy: coordinate y of center point

w: rectangle width

h: rectangle height

angle: rotate angle, the unit is degree, clockwise is positive,

image coordinate system

ret: 1: four vertexes are in the range. 0: four vertexes are out

of the range

Controller It is valid in controllers that support ZV function or they belong

417

to 5XX series or above.

Example

DIM ret

ret=ZV_RECT2INSIZE(640, 480, 320, 240, 120, 80, 0)

'judge whether 4 vertexes of rectangle are in the rectangle

range

13.1.26. ZV_HOUGHLINE -- Hough Find Line

Type Geometry

Description

Use probabilistic Hough to find straight lines. Use probabilistic

Hough transform to find straight lines that meet the

requirements from binary images.

Grammar

ZV_HOUGHLINE (img, lines, rho, theta, thresh, minLineLen,

maxLineGap)

img: ZVOBJECT type, single-channel binary image

lines: ZVOBJECT type, nx4 matrix, the starting coordinates

and end coordinates of the straight line are stored in the

columns.

rho: the distance accuracy of the accumulator in pixels. The

higher the accuracy (the smaller the value), the more time-

consuming it is. 1 is used commonly.

theta: the angular accuracy of the accumulator in degrees.

The higher the accuracy (the smaller the value), the more time-

consuming it is. 1 is used commonly.

thresh: accumulator threshold, that is, the vote value that it

must reach in the accumulator to identify a part as a straight line

in the graph. Only line segments larger than thresh can be

detected and returned to the result.

minLineLen: the minimum line segment length. Only line

segments larger than this parameter are detected.

maxLineGap: If the distance between the end points of two

segments on a collinear straight line is less than this parameter,

it is considered to be a line segment.

Controller It is valid in controllers that support ZV function or they belong

418

to 5XX series or above.

Example

ZVOBJECT img, imgBw, imgCanny, dst, lines

DIM row, rows

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,120,255) 'image binarization

ZV_CANNY(imgBw,imgCanny,10,200,3) 'extract edges

ZV_HOUGHLINE(imgCanny,lines,1,1,30,10,10) 'HOUGHLINE

ZV_GRAYTORGB(imgBw,dst) 'convert binary image to RGB

rows = ZV_MATROWS(lines) 'get the number of lines in lines

FOR row = 0 TO rows-1

ZV_MATGETROW(lines,row,4,0) 'get a certain line of lines

ZV_LINE(dst,TABLE(0),TABLE(1),TABLE(2),TABLE(3),zv_col

or(0,255,0)) 'draw a straight line

NEXT

13.1.27. ZV_HOUGCIRCLE -- Hough Find Circle

Type Geometry

Description

Use canny edge detection on the image to detect edges, and

then perform Hough voting on the edge points to find circles that

meet the conditions. This operator can easily find the center of

the circle, but it may not find a suitable circle radius, so a

suitable minimum radius and a maximum radius are needed.

Grammar

ZV_HOUGHCIRCLE (img, circles, minDis, edgeThresh, thresh,

minR, maxR)

 img: ZVOBJECT type, single-channel grayscale image

circles: ZVOBJECT type, nx3 matrix, the column stores the

center coordinates and radius in sequence.

419

minDis: minimum distance. If the distance between the

centers of two circles is less than this value, they are considered

as the same circle.

edgeThresh: canny edge detection high threshold, low

threshold uses half of the high threshold by default

thresh: the threshold for determining whether a point on the

accumulation plane is the center of the circle. The larger it is, the

closer the circle that can pass detection is to a perfect circle.

100 is used commonly.

minR: minimum radius of circle

maxR: maximum radius of circle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, imgBw, imgCanny, dst, lines

DIM row, rows

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_HOUGHCIRCLE (img, circles, 30, 233, 60, 20, 450)

'HOUGCIRCLE

ZV_GRAYTORGB (img,dst) 'convert grayscale image to RGB

rows = ZV_MATROWS(circles) 'get the row number of circles

FOR row = 0 TO rows-1

ZV_MATGETROW(circles,row,3,0)

'get a certain row of circles

ZV_CIRCLE(dst,TABLE(0),TABLE(1),TABLE(2),TABLE(3),zv_

color(0,255,0)) 'draw a circle

NEXT

420

13.1.28. ZV_GENCIRCLE – Make One Circle By 3 Points

Type Geometry

Description The circle is made by three points.

Grammar

ZV_GENCIRCLE(x1,y1,x2,y2,x3,y3,tabId)

x1: coordinate x of point 1

y1: coordinate y of point 1

x2: coordinate x of point 2

y2: coordinate y of point 2

x3: coordinate x of point 3

y3: coordinate y of point 3

tabId: output parameters, output TABLE No. of circle

information, they are cx, cy, radius.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZV_GENCIRCLE(-1, 0, 0, 1, 1, 0, 0) ‘3 points to make one circle

13.1.29. ZV_FITCIRCLE – Circle Fitting

Type Geometry

Description Use least squares to fit a circle based on input points

Grammar

ZV_FITCIRCLE(points,tabId[,method=0])

points: fitting point set, matrix type N rows and 2 columns,

one point in each row

tabId: TABLE index, output parameter, fit circle, they are cx,

cy, radius.

method: method of circle fitting.

0 - least squares, easy to be interfered by favorable

group points, it can be used for point clusters on a relatively

standard circle, otherwise interference from favorable

group points will cause the fitted circle to be inaccurate.

1 - Ransac, the random sampling consistency principle

can remove outlier interference without affecting the

accuracy of the fitted circle. It can be used when the

421

proportion of favorable points in the total point set is large,

such as 1/4 - 1/3, which is more time-consuming.

2 - iterative least squares, which can remove the

interference of favorable points without affecting the

accuracy of fitting circle. It can be used when the proportion

of favorable points in the total point concentration is

relatively small, such as less than 1/4, which is more time-

consuming.

The time-consuming situation of the three methods: 1 > 2 >

0. Usually, it is recommended to use 2.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT points

TABLE(0, 0, 0, 1, 1, 0, 0) 'save data into TABLE(0)

ZV_MATGENDATA(points,3,2,0) 'generate matrix by data

ZV_FITCIRCLE(points, 0, 2)

'fit circle and output circle information, and put them

into TABLE (0) in order

13.1.30. ZV_FITELLIPSE – Ellipse Fitting

Type Geometry

Description Use least squares to fit an ellipse based on input points

Grammar

ZV_FITELLIPSE(pts, tabId)

pts: fitted point set, matrix type, N rows 2 columns, one

point of each row.

tabId: TABLE index, output parameter, fit ellipse, they are cx,

cy, xr, yr, angle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT points

TABLE(0, 0, 0, 1, 1, 0, 0) 'save data into TABLE(0)

ZV_MATGENDATA(points,3,2,0) 'generate matrix by data

ZV_FITELLIPSE(points, 0)

422

'fit ellipse and output circle information, and put them

into TABLE (0) in order

13.2. Transformation

13.2.1. ZV_MAT2DADDTRANS – Add Translation for

Transformation Matrix

Type Transform

Description

In transformation matrix, add translation.

isBaseAfter is 0:

Transformation matrix “mat” translation

isBaseAfter is 1:

 Translation Transformation matrix “mat”

Grammar

ZV_MAT2DADDTRANS (mat, tx, ty, isBaseAfter)

mat: ZVOBJECT type, transformation matrix

tx: x direction offset parameter

ty: y direction offset parameter

isBaseAfter: whether the parameter is based on

transformation, if it is 1, it is based on transformation, that is, the

translation transformation is equivalent to executing after the

mat transformation, which is equivalent to executing the original

transformation of mat first and then executing the

transformation specified by the parameter.

423

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE(0, 1, 0.2, 0, 0, 1, 0) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,0) 'transform matrix

ZV_MAT2DADDTRANS (affine_mat, 5, 5, 1)

 ‘add offset (5,5) for transform matrix “mat”.

13.2.2. ZV_MAT2DADDROT – Add Rotate for

Transformation Matrix

Type Transform

Description

In transformation matrix, add rotation.

isBaseAfter is 0:

Transformation matrix “mat” rotation

isBaseAfter is 1:

rotation base rotation rotate base Transformation

matrix “mat”

Grammar

ZV_MAT2DADDROT (mat, angle, cx, cy, isBaseAfter)

mat: ZVOBJECT type, transformation matrix

angle: angle of rotation, clockwise is positive

cx: x coordinate of rotation base point, it is valid when

isBaseAfter is 1

cy: y coordinate of rotation base point, it is valid when

isBaseAfter is 1

isBaseAfter: whether the parameter is based on after

424

transformation, if it is 1, it is based on transformation, that is, the

rotation transformation is equivalent to executing after the mat

transformation.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE(0, 1, 0.2, 0, 0, 1, 0) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,0) 'transformation matrix

ZV_MAT2DADDROT (mat, -20, 0, 0, 1)

 ‘rotate matrix “mat” 30 degrees at (0, 0) firstly, then scale

out 0.8, then rotate -20 degrees at rotation base point (20, 20)

13.2.3. ZV_MAT2DADDSCALE – Add Scaling for

Transformation Matrix

Type Transform

Description

In transformation matrix, add scaling.

isBaseAfter is 0:

Transformation matrix “mat” scaling

isBaseAfter is 1:

scaling base rotation scaling base Transformation

matrix “mat”

Grammar

ZV_MAT2DADDSCALE (mat, sx, sy, cx, cy, isBaseAfter)

mat: ZVOBJECT type, transformation matrix

sx: scaling coefficient in x direction

sy: scaling coefficient in y direction

425

cx: x coordinate of scaling base point, it is valid when

isBaseAfter is 1

cy: y coordinate of scaling base point, it is valid when

isBaseAfter is 1

isBaseAfter: whether the parameter is based on after

transformation, if it is 1, it is based on transformation, that is, the

scaling transformation is equivalent to executing after the mat

transformation.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE(0, 1, 0.2, 0, 0, 1, 0) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,0) 'transformation matrix

ZV_MAT2DAASCALE (mat, 0.8, 1.2, 20, 20, 1)

 ‘scale out 0.8 times in x direction for transformation matrix

“mat”, and scale in 1.2 times in y direction, and the base

point of scaling is 20, 20

13.2.4. ZV_GETSIMILARITYP – Build Similarity

Transformation Matrix

Type Transform

Description

Construct a similarity transformation matrix based on

parameters. Similarity transformation is a type of

transformation that transforms graphics. It can perform

rotation, scaling, translation and other transformations on

graphics. The length ratio and angle remain unchanged before

and after transformation. It is similar to similarity triangles. In

the same way, it can also be used to transform two-dimensional

coordinates.

Grammar

ZV_GETSIMILARITYP (mat, cx, cy, angle, scale)

mat: ZVOBJECT type, matrix type, calculated similarity

transformation matrix, 2 rows and 3 columns

cx: x coordinate of rotation center of similarity

426

transformation

cy: y coordinate of rotation center of similarity

transformation

angle: rotation angle of similarity transformation, clockwise

is positive

scale: scaling of similarity transformation

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_GETSIMILARITYP (mat, 0, 0, 30, 1)

 ‘according to related parameters, build transformation

matrix, it is 2 rows and 3 columns, build one similarity

transformation matrix “mat” whose rotation center is (0,0),

rotation angle is 45 and scaling is 1.

13.2.5. ZV_GETRIGIDVECTOR – Calculate Rigid

Transformation Matrix

Type Transform

Description

According to the vector transformation relationship, the rigid

transformation matrix is calculated using the vectors before and

after transformation, and the angles are all positive clockwise.

Rigid transformation is a type of transformation that transforms

graphics. It can perform rotation, translation and other

transformations on graphics. The length and area of the

graphics remain unchanged before and after the transformation,

and the shape does not change. In the same way, the two-

dimensional coordinates of the space can also be transformed.

Grammar

ZV_GETRIGIDVECTOR (mat, x1, y1, angle1, x2, y2, angle2)

mat: ZVOBJECT type, matrix type, calculated rigid

transformation matrix, 2 rows and 3 columns

x1: x coordinate of vector before transformation

y1: y coordinate of vector before transformation

angle1: the direction of vector 1 before transformation

427

x2: x coordinate of vector after transformation

y2: y coordinate of vector after transformation

angle2: the direction of vector 2 after transformation

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

ZV_GETRIGIDBVECTOR (mat, 0, 0, 30, 5, 5, 60)

‘According to the relationship between vectors, the rigid

transformation matrix mat is calculated using the vectors

before and after transformation.

13.2.6. ZV_GETRIGID – Calculate Rigid Transformation

Matrix

Type Transform

Description

The rigid transformation matrix is calculated using two points

before and after transformation.

Rigid transformation is a type of transformation that transforms

graphics. It can perform rotation, translation and other

transformations on graphics. The length and area of the

graphics remain unchanged before and after the transformation,

and the shape does not change. In the same way, the two-

dimensional coordinates of the space can also be transformed.

Grammar

ZV_GETRIGIDVECTOR (mat, tabIdSrc, tabIdDst)

mat: ZVOBJECT type, matrix type, calculated rigid

transformation matrix, 2 rows and 3 columns

tabIdSrc: TABLE index, two points before transformation,

they are x1, y1, x2, y2 in order

tabIdDst: TABLE index, two points after transformation,

they are x1, y1, x2, y2 in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT mat

TABLE (0, 0, 0, 2, 2) ‘save data into TABLE (0)

428

TABLE (100, 1, 0, 7, 10) ‘save data into TABLE (100)

ZV_GETRIGID (mat, 0, 100)

 ‘save two points before transformation into TABLE (0) and

save two points after transformation into TABLE (100), then

calculate two points before and after transformation to get

rigid transformation matrix “mat”.

13.2.7. ZV_GETSIMILARITY – Calculate Similarity

Transformation Matrix

Type Transform

Description

The similarity transformation matrix is calculated using two

points before and after transformation.

Similarity transformation is a type of transformation that

transforms graphics. It can perform rotation, translation and

other transformations on graphics. The length and area of the

graphics remain unchanged before and after the transformation,

and the shape does not change. In the same way, the two-

dimensional coordinates of the space can also be transformed.

Grammar

ZV_GETSIMILARITY (mat, tabIdSrc, tabIdDst)

mat: ZVOBJECT type, matrix type, output parameter,

calculated transformation matrix, 2 rows and 3 columns

tabIdSrc: TABLE index, two points before transformation,

they are x1, y1, x2, y2 in order

tabIdDst: TABLE index, two points after transformation,

they are x1, y1, x2, y2 in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE (0, 0, 0, 2, 2) ‘save data into TABLE (0)

TABLE (100, 1, 0, 7, 10) ‘save data into TABLE (100)

ZV_GETSIMILARITY (mat, 0, 100)

 ‘save two points before transformation into TABLE (0) and

save two points after transformation into TABLE (100), then

429

calculate two points before and after transformation to get

similarity transformation matrix “mat”.

13.2.8. ZV_GETAFFINE – Calculate Affine Transformation

Matrix

Type Transform

Description

The affine transformation matrix is calculated using three points

before and after transformation.

Affine transformation is a type of transformation that

transforms graphics. It can perform rotation, scaling,

translation, oblique cutting (also called tilting, cross-cutting)

and other transformations on graphics. It has the

characteristics of straightness and parallelism, that is, straight

lines are still straight lines before and after the transformation.,

parallel lines are still parallel lines. In the same way, the two-

dimensional coordinates of space can also be transformed.

Grammar

ZV_GETAFFINE (mat, tabIdSrc, tabIdDst)

mat: ZVOBJECT type, matrix type, output parameter,

calculated affine transformation matrix, 2 rows and 3 columns

tabIdSrc: TABLE index, three points before transformation,

they are coordinates x and y in order

tabIdDst: TABLE index, three points after transformation,

they are coordinates x and y in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE (0, 0, 0, 2, 2, 5, 5) ‘save data into TABLE (0)

TABLE (100, 1, 0, 7, 10, 5, 3) ‘save data into TABLE (100)

ZV_GETAFFINE (mat, 0, 100)

 ‘calculate three points before and after transformation to

get affine transformation matrix “mat”.

430

13.2.9. ZV_ESTSIMILARITY -- Estimate Similarity Matrix

Type Transform

Description

Estimate the similarity transformation matrix based on multiple

points (at least 2 pairs) using the RANSAC (Random Sampling

Consistency) algorithm.

Similar transformation is a type of transformation that

transforms graphics. It can perform rotation, scaling, translation

and other transformations on graphics. The length ratio and

angle remain unchanged before and after transformation. It is

similar to similar triangles. In the same way, it can also be used

to transform two-dimensional coordinates. Estimating the

similarity transformation matrix based on the front and rear

point pairs means that the front and rear point pairs may not be

completely absolute one-to-one correspondence, and there

may be a certain deviation. Points with a deviation greater than

thresh are considered outliers, and points less than or equal to

thresh are considered inline points. And outlier points will be

eliminated during the estimation process and the remaining

inline points will eventually be used to estimate the matrix. The

estimated matrix will minimize the point error before and after

the transformation.

Grammar

ZV_ESTSIMILARITY(from,to,mat,thresh,confidence,tabId)

from: ZVOBJECT type, point before transformation, matrix

representation

to: ZVOBJECT type, points after transformation, matrix

representation

mat: ZVOBJECT type, matrix type, estimated transformation

matrix, 2 rows and 3 columns

thresh: point projection error threshold. Points with an error

less than or equal to thresh are considered inline points. The

recommended value is 3.

confidence: confidence, ranging from 0-100, used for

matrix estimation, usually between 95 and 99 is enough, 99 is

recommended, too close to 100 will reduce the estimation

431

speed, lower than 80-90 may lead to inaccurate estimation

precise

tabId: TABLE index, output parameter, corresponding to the

selected state of the input parameter from or to point set after

iteration, that is, the selected state of inline points is 1, and the

selected state of outlier points is 0

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT matSrc, matDst, matAffine

TABLE(0,0,0,2,2,5,5)

'stores the coordinates of the 3 points before

transformation

ZV_MATGENDATA(matSrc,2,3,0)

'matrix of points before transformation

TABLE(100,1,0,7,10,5,3)

'stores the coordinates of the 3 points after transformation

ZV_MATGENDATA(matDst,2,3,100)

'matrix of points before transformation

ZV_ESTSIMILARITY(matSrc,matDst,matAffine,3,99,0)

'use the point “from” before transformation and the point

“to” after transformation to estimate the similarity

transformation matrix “mat”

13.2.10. ZV_ESTAFFINE -- Estimate Affine Matrix

Type Transform

Description

Estimate the affine transformation matrix based on multiple

points (at least 3 pairs) using the RANSAC (Random Sampling

Consistency) algorithm.

Affine transformation is a type of transformation that

transforms graphics. It can perform rotation, scaling,

translation, oblique cutting (also called tilting, cross-cutting)

and other transformations on graphics. It has the

characteristics of straightness and parallelism, that is, straight

432

lines are still straight lines before and after the transformation.,

parallel lines are still parallel lines. In the same way, the two-

dimensional coordinates of space can also be transformed.

Estimating the affine transformation matrix based on the front

and rear point pairs means that the front and rear point pairs

may not be completely absolute one-to-one correspondence,

and there may be a certain deviation. Points with a deviation

greater than thresh are considered outliers, and points less than

or equal to thresh are considered inline points. And outlier points

will be eliminated during the estimation process and the

remaining inline points will eventually be used to estimate the

matrix. The estimated matrix will minimize the point error before

and after the transformation.

Grammar

ZV_ESTAFFINE(from,to,mat,thresh,confidence,tabId)

from: ZVOBJECT type, point before transformation, matrix

representation

to: ZVOBJECT type, points after transformation, matrix

representation

mat: ZVOBJECT type, matrix type, estimated transformation

matrix, 2 rows and 3 columns

thresh: point projection error threshold. Points with an error

less than or equal to thresh are considered inline points. The

recommended value is 3.

confidence: confidence, ranging from 0-100, used for

matrix estimation, usually between 95 and 99 is enough, 99 is

recommended, too close to 100 will reduce the estimation

speed, lower than 80-90 may lead to inaccurate estimation

precise

tabId: TABLE index, output parameter, corresponding to the

selected state of the input parameter from or to point set after

iteration, that is, the selected state of inline points is 1, and the

selected state of outlier points is 0

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example ZVOBJECT matSrc, matDst, matAffine

433

TABLE(0,0,0,2,2,5,5)

'stores the coordinates of the 3 points before

transformation

ZV_MATGENDATA(matSrc,2,3,0)

'matrix of points before transformation

TABLE(100,1,0,7,10,5,3)

'stores the coordinates of the 3 points after transformation

ZV_MATGENDATA(matDst,2,3,100)

'matrix of points before transformation

ZV_ESTAFFINE(matSrc,matDst,matAffine,3,99,0)

'use the point “from” before transformation and the point

“to” after transformation to estimate the similarity

transformation matrix “mat”

13.2.11. ZV_AFFINETRANS – Affine Transformation

Type Transform

Description

Performs an affine transformation on num points. Affine

transformation has a wide range of transformations, including

rigid transformation and similarity transformation. Therefore,

rigid transformation matrices, similarity transformation

matrices, and affine transformation matrices can all use this

command to transform coordinate points. The transformation

matrix of this instruction is 2 rows and 3 columns because the

last row of the homogeneous transformation matrix with 3 rows

and 3 columns is fixed data 0, 0, 1, and the two-dimensional

coordinates (x, y) are converted into homogeneous coordinates

(x, y,1) only needs to add 1 to the third dimension, so the formula

for transforming the two-dimensional coordinate point is as

follows:

434

The linear transformation part a1, a2, a3, a4 of the

transformation matrix is responsible for linear transformation

such as rotation, scaling, oblique cutting, etc. on the coordinate

point (x, y). The coordinate translation amount tx, ty is

responsible for performing translation on the coordinate point

(x, y).

The transformation equation is as follows:

Grammar

ZV_AFFINETRANS(mat,num,tabIdSrc,tabIdDst)

mat: ZVOBJECT type, transformation matrix

num: the number of coordinate points

tabIdSrc: TABLE index, the coordinate point to be

transformed, x and y are stored in sequence starting from the

TABLE index

tabIdDst: output parameters, TABLE index, transformed

coordinate points, store x, y in sequence

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE(0, 1, 0.2, 0, 0, 1, 0) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,0) 'transformation matrix

TABLE(10,0,0,2,2,5,5) 'store the coordinates of the three points

before transformation

ZV_AFFINETRANS(mat,3,10,100)

’use the affine transformation matrix mat to perform affine

transformation on the input coordinate points, and stores

435

the transformed points into TABLE (100)

13.2.12. ZV_VECTORCORRECT – Vector Correction

Type Transform

Description

Correct input vector.

Grammar

ZV_VECTORCORRECT(mat,vecx,vecy,veca,tabId)

mat: ZVOBJECT type, corrected transformation matrix, the

matrix is 2*3 or 3*3

vecx: starting x coordinate of the input vector

vecy: the starting y coordinate of the input vector

veca: angle of the input vector, clockwise is positive

tabId: TABLE index, output parameters, corrected vector

parameters, x, y, angle in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img,clrImg,mat,mod,matchImg,rlts

ZVOBJECT matRigid,modContList,dstContList

ZV_READIMAGE(img, "model.jpg", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,mod,0,360,1,1,50,0,0,0,0)

'create template

ZV_SHAPECONTOURS(mod, modContList, 0)

436

'get template contour

ZV_READIMAGE(matchImg, "1.png", 0)

'read the image in the original image format

ZV_SHAPEFIND(mod,matchImg,rlts,90,1,0,-1,3,9,0)

'template matching

ZV_MATGETROW(rlts,0,5,0)

'obtain the first row of the matching result matrix, which are:

matching score “score”, x coordinate, y coordinate, rotation

angle “angle”, and scaling ratio “scale”

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

TABLE(10, 1, 0, -95, 0, 1, -55) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,10) 'transformation matrix

ZV_VECTORCORRECT(mat,TABLE(1),TABLE(2),TABLE(3),20)

'use the transformation matrix mat to correct the input

vector (x1, y1, angle1), and the corrected vector is stored in

TABLE (20)

ZV_MARKER(clrImg,TABLE(20),TABLE(21),0,30,zv_color(0,255,0

)) 'draw mark

13.2.13. ZV_POSECORRECT – Vector Correction

Type Transform

Description

To correct the input vector, add a translation amount to the point

position in the vector to achieve a customized position. It is

usually used to customize the positioning output point. For

example, if the coordinates of the mark point in the positioning

output are x1, y1, angle1, then if you want to specify the

positioning coordinates as a position x2, y2 next to the mark

point. Then, the positioning point can be corrected, that is,

transx = x2-x1, transy = y2-y1, ZV_POSECORRECT (x1, y1,

angle1, transx, transy, 0)

Grammar
ZV_POSECORRECT(vecx,vecy,veca,transx,transy,tabId)

vecx: starting x coordinate of the input vector

437

vecy: the starting y coordinate of the input vector

veca: angle of the input vector, clockwise is positive

transx: translation x of vector coordinate

transy: translation y of vector coordinate

tabId: TABLE index, output parameters, corrected vector

parameters, x, y, angle in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img,clrImg,mat,mod,matchImg,rlts

ZVOBJECT matRigid,modContList,dstContList

ZV_READIMAGE(img, "model.jpg", 0)

'read the image in the original image format

ZV_SHAPECREATE(img,mod,0,360,1,1,50,0,0,0,0)

'create template

ZV_SHAPECONTOURS(mod, modContList, 0)

'get template contour

ZV_READIMAGE(matchImg, "1.png", 0)

'read the image in the original image format

ZV_SHAPEFIND(mod,matchImg,rlts,90,1,0,-1,3,9,0)

'template matching

ZV_MATGETROW(rlts,0,5,0)

'obtain the first row of the matching result matrix, which are:

matching score “score”, x coordinate, y coordinate, rotation

angle “angle”, and scaling ratio “scale”

ZV_GRAYTORGB(matchImg,clrImg)

'convert grayscale image to RGB image

TABLE(10, 1, 0, -95, 0, 1, -55) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,10) 'transformation matrix

ZV_POSECORRECT(mat, TABLE(1), TABLE(2), TABLE(3), -105,

438

35, 20)

'translate -105 and 35 pixels in the x and y direction

respectively for input vector (1, 1, 30), the correct it, and the

corrected vector is stored in TABLE (20)

ZV_MARKER(clrImg,TABLE(20),TABLE(21),0,30,zv_color(0,255,0

)) 'draw mark

13.2.14. ZV_RECT2RCORRECT – Rectangle Correction

Type Transform

Description

Correct the input rectangular ROI. Usually, the rectangle is used

as the ROI parameter combined with the positioning offset

correction matrix to correct the ROI.

Grammar

ZV_RECT2CORRECT(mat,cx,cy,width,height,angle,tabId)

mat: ZVOBJECT type, corrected transformation matrix

cx: x coordinate of the input rectangle center

cy: y coordinate of the input rectangle center

width: input rectangle width

height: input rectangle height

angle: input rectangle angle

tabId: TABLE index, output parameters, corrected rectangle

parameters, they are cx, cy, width, height, angle in order

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

439

ZVOBJECT img,reSrc,reDst,mat

ZV_READIMAGE(img,"1.png",0)

'read the image in the original image format

ZV_IMGSETCONST(img,0) 'constant fill image

ZV_REGENRECT2(reSrc,200,200,120,80,30)

'generate an angled rectangular area

TABLE(0, 1, 0.5, 50, 0.5, 1, 50) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,0) 'transformation matrix

ZV_RECT2CORRECT(mat,200,200,120,80,30,10)

’use the transformation matrix mat to correct the input

rectangle, and the corrected rectangle is stored in TABLE

(10)

ZV_REGENRECT2(reDst,TABLE(10),TABLE(11),TABLE(12),TABL

E(13),TABLE(14)) 'generate an angled rectangular area

ZV_REGION(img,reDst,0,ZV_COLOR(255,255,255))

'region to binarization

13.2.15. ZV_SECTRCORRECT – Sector Correction

Type Transform

Description

Correct the input sector ROI. Usually, the sector is used as the

ROI parameter combined with the positioning offset correction

matrix to correct the ROI.

Grammar

ZV_SECT2CORRECT(mat,cx,cy,r1,r2,stAngle,extAngle,tabId)

mat: ZVOBJECT type, corrected transformation matrix

cx: x coordinate of the input sector center

cy: y coordinate of the input sector center

r1: inner circle radius of input sector, >0

r2: outer circle radius of input sector, >0 and r2 > r1

440

stAngle: starting angle of input sector, unit is degree

extAngle: angle range of input sector, unit is degree, >0

tabId: TABLE index, output parameters, corrected sector

parameters, they are cx,cy,r1,r2,stAngle,extAngle,tabId in order.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img,reSrc,reDst,mat

ZV_READIMAGE(img,"1.png",0)

'read the image in the original image format

ZV_IMGSETCONST(img,0)

ZV_REGENRECT2(reSrc,200,220,50,80,0,120)

'generate a sector area

TABLE(0, 1, 0.5, 50, 0.5, 1, 50) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,0) 'transformation matrix

ZV_SECTCORRECT(mat,200,220,50,80,0,120,10)

’use the transformation matrix mat to correct the input

sector, and the corrected rectangle is stored in TABLE (10)

ZV_REGENRECT2(reDst,TABLE(10),TABLE(11),TABLE(12),TABL

E(13),TABLE(14),TABLE(15)) 'generate a sector area

ZV_REGION(img,reDst,0,ZV_COLOR(255,255,255))

'region to binarization

13.2.16. ZV_AFFINETOPARAM – Transformation

Parameter

Type Transform

Description
Get the transformation parameters of the transformation matrix

Calculate the affine transformation parameters corresponding

441

to the homogeneous two-dimensional transformation matrix

mat. The parameters sx and sy determine how the

transformation scales the original x- and y-axes respectively.

The angle slant describes whether the transformed coordinate

axis is tilted. If |slant| > 90° , the transformation includes a mirror.

The angle “angle” determines the rotation angle of the

transformed x-axis relative to the original x-axis. The

parameters tx and ty determine the translation of the coordinate

system. The matrix can be generated by the following

transformation parameters in steps of scaling, tilting, rotation

and translation.

Grammar

ZV_AFFINETOPARAM(mat,tabId)

 mat: ZVOBJECT type, matrix

tabId: TABLE index of the output parameters, which are sx,

sy, angle, slant, tx, ty. The meaning of each parameter is as

follows:

sx scaling coefficient in x-axis direction, > 0

sy scaling coefficient in the y-axis direction, > 0

angle: rotation of the transformed x-axis relative to the

original x-axis

slant: y direction slope, an absolute value > 90°

indicates the existence of a mirror image

tx: x direction translation

ty: y direction translation

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT mat

TABLE(0, 1, 0.2, 0, 0, 1, 0) 'save data into TABLE(0)

ZV_MATGENDATA(mat,2,3,0)'transformation matrix

ZV_AFFINETOPARAM(mat,10)

’obtain the transformation parameters of the mat matrix

and stores them in the TABLE (10)

442

13.3. Correction

13.3.1. ZV_GENCORRECTION – Generate Position

Correction Model

Type Transformation

Description
Generate a position correction model through the reference

point coordinates and reference direction.

Grammar

ZV_GENCORRECTION (ref,x,y,angle)

ref: generated correction model, ZVOBJECT type

x: base x coordinate of corrected reference point

y: base y coordinate of corrected reference point

angle: base direction of corrected reference point, the unit

is angle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

13.3.2. ZV_APPLYCORRECTION – Execution Position

Correction

Type Transformation

Description

Perform position correction on obj, which only supports contour

matching defect detectors. The correction is based on the

change of the actual coordinates and direction of the reference

point relative to the reference point, and the correction object is

adjusted so that the relationship between the corrected object

and the reference point remains consistent.

Grammar

ZV_APPLYCORRECTION (ref,obj,x,y,angle)

ref: correction reference point model

obj: the object to be corrected, ZVOBJECT type, it supports

contour matching defect detectors.

x: real x coordinate of corrected reference point

443

y: real y coordinate of corrected reference point

angle: real direction of reference point, the unit is angle

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

13.4. Calibration

13.4.1. ZV_CALGENSCATAB – Generate Solid Circle Array

Calibration Plate Image

Type Calibration

Description

Generate solid circle array calibration plate image.

Generate image size of [width, height] = [(cols + 3) * 4 * radius,

(rows + 3) * 4 * radius], the maximum data volume of the

generated image cannot exceed 2G, that is, width *height<=

2048*1024 *1024

Grammar

ZV_CALGENSCATAB (img, rows, cols, radius, polar)

img: ZVOBJECT type, output parameter, generated

calibration plate grayscale image

rows: the number of circles in vertical direction, >0

cols: the number of circles in horizontal direction, >0

radius: the radius of circle point, the unit is pixel, >0

polar: circle color, 0: black circle with white background, 1:

white circle with black background.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_CALGENSCATAB (img, 4, 3, 30, 0)

444

‘generate the calibration image that belongs to black circle with

white background, there are black circles of 4 rows and 3

columns in the image.

13.4.2. ZV_CALGENCHESSTAB – Generate Chess

Calibration Plate Image

Type Calibration

Description

Generate chess calibration plate image.

Generate image size of [width, height] = [(cols + 2) * blockSize,

(rows + 2) * blockSize], the maximum data volume of the

generated image cannot exceed 2G, that is, width * height < =

2048*1024 *1024

Grammar

ZV_CALGENCHESS (img, rows, cols, blockSize)

img: ZVOBJECT type, output parameter, generated

calibration plate grayscale image

rows: the number of points in vertical direction, >0

cols: the number of points in horizontal direction, >0

blockSize: the size of black and white blocks in chess

board, > 0, the unit of pixel

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_CALGENCHESS (img, 7, 7, 30)

‘generate the chess board calibration image

13.4.3. ZV_CALGETSCAPTS – Generate Center

Coordinate of Solid Circle Calibration Plate

Type Calibration

Description
Calculate the center coordinates of the solid circle array

calibration plate image. The calibration plate image requires at

445

least nine points, and the output circle center coordinates are

irregular.

Grammar

ZV_CALGETSCAPTS(img,ppts,thresh,polar,minArea,maxArea)

img: ZVOBJECT type, single-channel image of calibration

board

ppts: ZVOBJECT type, output parameters, calculated point

coordinates, matrix type N rows and 2 columns

thresh: threshold for extracting dots

polar: dot polarity, 0-black, 1-white

minArea: search the minimum pixel area range of dots

maxArea: search the maximum pixel area range of dots

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, ppts

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'use 128 threshold to segment the image, search for

black dots with a pixel area within the range of [500, 5000],

extract the position coordinates of each dot, generate a matrix

of N rows and 2 columns and store it in ppts

13.4.4. ZV_CALGENCHESSPTS – Get the Corner Point

Coordinates of the Checkerboard Calibration Plate

Type Calibration

Description

Calculate the corner point coordinates of the checkerboard

calibration plate. The corner point requires at least nine points,

and the output corner point coordinates are irregular.

Grammar

ZV_CALGETCHESSPTS (img,ppts)

img: ZVOBJECT type, single-channel image of calibration

board

446

ppts: ZVOBJECT type, output parameters, calculated point

coordinates, matrix type N rows and 2 columns

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, ppts

ZV_READIMAGE(img,"test.png",0)

'read the image in the original image format

ZV_CALGETSHESSPTS(img,ppts)

'obtain corner point coordinates of chess calibration board,

generate a matrix of N rows and 2 columns and store it in ppts

13.4.5. ZV_CALGETBASE – Get Base Coordinate System

Type Calibration

Description

Select a reference coordinate system (consisting of 3 points)

from the input point set. The selection method is to match the

points in the input point set according to the input coordinate

system points, the origin point is to the origin point, the x-axis

point is to the x-axis point, and the y-axis point is to the y-axis

points, and finally select the 3 points closest to these 3 points

as the output reference coordinate system. It is recommended

that the origin, x-axis point, and y-axis point are three adjacent

points that constitute the rectangular coordinate system.

Grammar

ZV_CALGETBASE (pptsIn, baseIn, baseOut)

pptsIn: ZVOBJECT type, input pixel coordinate point set,

single-channel nx2 matrix

baseIn: ZVOBJECT type, input coordinate system, single-

channel 3x2 matrix, respectively the origin, x-axis point, and y-

axis point, all > 0

baseOut: ZVOBJECT type, output base coordinate system,

single-channel 3x2 matrix, respectively the origin, x-axis point,

and y-axis point

like below image:

447

blue are 3 input points, read point means selected output

base coordinate system.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, ppts, baseIn, baseOut

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(baseIn,3,2,0)

'generate coordinate system matrix

ZV_CALGETBASE(ppts,baseIn,baseOut)

'get the base coordinate system

13.4.6. ZV_CALGETPTSMAP – Calculate Map Point Pair

of Pixel Coordinate And Word Coordinate

Type Calibration

Description

Calculate the mapping point pair of pixel coordinates and world

coordinates based on the actual distance between two adjacent

points of the input pixel coordinates, and output the sorted pixel

coordinates and world coordinates. This operator implements

two functions:

First, it sorts and outputs the pixel coordinates and world

coordinates according to the world coordinate system selected

448

by default (usually 3 points in the upper left corner or 3 points in

the lower left corner are selected to form the world coordinate

system according to the actual situation of the calibration

board), sorting method: sort according to the world coordinate

value y from small to large, x from small to large.

Second, it corresponds one-to-one between pixel

coordinates and world coordinates. The value at the world

coordinate origin in wpts is (0,0). For size measurement or area

measurement, only the relative distance of the target needs to

be measured, so there is no need to know the real world

coordinate origin and can be used directly for calibration. When

the machine takes absolute machine coordinates, it needs to

modify each world coordinate value corresponding to the pixel

in wpts and then calibrate it.

Grammar

ZV_CALGETPTSMAP(pptsIn,ppts,wpts,dis)

 pptsIn: ZVOBJECT type, input parameters, input pixel

coordinates, matrix type N rows and 2 columns

ppts: ZVOBJECT type, output parameters, sorted pixel

coordinates, matrix type N rows and 2 columns

wpts: ZVOBJECT type, output parameters, sorted world

coordinates, matrix type N rows and 2 columns

dis: input parameter, the actual distance between two

adjacent points horizontally or vertically, dis is a numerical

value, the unit can be (millimeters mm), (centimeters cm),

(decimeters dm), (meters m), > 0

the sorting method of outputs:

449

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, ppts, ppts_out, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

ZV_CALGETPTSMAP(ppts,ppts_out,wpts,10)

’extract the corresponding pixel coordinates and world

coordinates from the input point set ppts based on the actual

distance between two adjacent world coordinate points, and

stores them in ppts_out and wpts respectively.

13.4.7. ZV_CALGETPTSMAPBASE – Calculate Map Point

Pair of Pixel Coordinate And Word Coordinate

Type Calibration

Description

The function is similar to the ZV_CALGETPTSMAP instruction.

The difference is that the world coordinate system used by the

ZV_CALGETPTSMAP instruction is at the upper left corner or

lower left corner of the solid circle feature point, while the

coordinate system used by the ZV_CALGETPTSMAPBASE

instruction is the coordinate system input by the instruction.

Grammar

ZV_CALGETPTSMAPBASE(pptsIn,baseIn,ppts,wpts,dis)

 pptsIn: ZVOBJECT type, input pixel coordinates, matrix type

N rows and 2 columns

baseIn: ZVOBJECT type, input base coordinate system,

single-channel 3x2 matrix, respectively the origin, x-axis point,

and y-axis point, all > 0

ppts: ZVOBJECT type, output parameters, sorted pixel

coordinates, matrix type N rows and 2 columns

wpts: ZVOBJECT type, output parameters, sorted world

coordinates, matrix type N rows and 2 columns

dis: the actual distance between two adjacent points

450

horizontally or vertically, dis is a numerical value, the unit can be

(millimeters mm), (centimeters cm), (decimeters dm), (meters

m), greater than 0

the sorting method of outputs:

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, ppts, basIn, baseOut, pptsOut, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(baseIn,3,2,0)

'generate coordinate system matrix

ZV_CALGETBASE(ppts,baseIn,baseOut)

'get the base coordinate system

ZV_CALGETPTSMAPBASE(ppts,baseOut,pptsOut,wpts,10)

'extract the corresponding pixel coordinates and world

coordinates from the input point set ppts based on the

actual distance between two adjacent world

coordinate points, and store them in pptsOut and wpts

respectively.

451

13.4.8. ZV_CALCAM -- Calibration

Type Calibration

Description

Calibrate the camera based on pixel coordinates and world

coordinates. After calibration, ensure that the relative height of

the camera plane and the photographing plane remains

unchanged. If the relative height changes, recalibration is

required.

Note: 1 and 2 in the calibration type are non-linear calibration

methods. In this case, the image coordinate system is uneven,

that is, the scaling, rotation, etc. at different positions may be

different. Therefore, absolute coordinates must be used for

coordinate conversion, relative coordinates can’t be used.

Grammar

ZV_CALCAM (ppts,wpts,param,width,height,type)

ppts: ZVOBJECT type, input parameters, pixel coordinates,

matrix type, N rows and 2 columns, N is ≥ 9

wpts: ZVOBJECT type, input parameters, world coordinates,

matrix type, N rows and 2 columns, N is ≥ 9

param: ZVOBJECT type, output parameter, generated

calibration coefficient

width: input parameter, image width when pixel coordinates

are obtained

height: input parameter, image height when pixel

coordinates are obtained

type: type of camera calibration.

0 - linear coordinate system calibration, which is a

calibration of the coordinate conversion relationship

between two coordinate systems. This method can be used

when the camera plane is perpendicular to the

photographing plane and the lens has no distortion.

1 - nonlinear coordinate system calibration, which is a

calibration of the coordinate conversion relationship

between two coordinate systems. This method can be used

when the camera plane is not perpendicular to the

photographing plane and the lens has no distortion.

452

2 - camera full parameter calibration, due to the

complexity of lens design and craftsmanship and other

factors, the actual lens imaging system produces so-called

lens distortion, such as radial distortion, tangential

distortion, etc. The camera calibration process is to

determine the geometric model and optical parameters of

the camera. This method can be used when the camera

plane is not perpendicular to the photographing plane and

there is lens distortion.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, ppts, param, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2)

’use type 2 to perform camera calibration on the pixel

coordinates extracted from the image with a width of

640 and a height of 480, combined with the world

coordinates, and the coefficients after calibration are

stored in param

13.4.9. ZV_CALUNDISTORTPARAM – Get Undistort

Parameters

Type Calibration

453

Description

Obtain new camera calibration parameters with perspective

distortion or radial distortion + perspective distortion removed.

The new calibration parameters are used for the distortion-

corrected image and convert pixel coordinates into world

coordinates.

Alias: ZV_CALUNDISTORTCAMPRA

Grammar

ZV_CALUNDISTORTPARAM (param, newParam)

param: ZVOBJECT type, input parameters, calibration

parameters

newParam: ZVOBJECT type, output parameters, calibration

parameters

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, ppts, param, wpts, newParam

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_CALUNDISTORTPARAM (param, newParam)

‘get new calibration parameters

13.4.10. ZV_CALDECOMPOSE – Calibration Parameters

Decomposition

Type Calibration

Description Obtain internal parameters and external parameters of

454

calibration parameters and radial distortion coefficient.

Grammar

ZV_CALDECOMPOSE(param,interParam,outParam,tabId)

param: ZVOBJECT type, input parameters, calibration

parameters

interParam: ZVOBJECT type, internal parameters, output

parameters, 3x3 64F matrix

outParam: ZVOBJECT type, external parameters, output

parameter, 4x4 64F matrix

tabId: TABLE id used to store radial distortion coefficient k1,

output

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

13.4.11. ZV_CALGETPIXSCALE – Get Pixel Scale

Type Calibration

Description

Get the pixel scale from the calibration parameters. The pixel

scale represents the actual size represented by the unit pixel.

The actual size unit is consistent with the world coordinate unit

used during calibration. It is usually more convenient to use the

pixel scale multiplied by the pixel length (the pixel length

obtained on the image) to obtain the actual length. If the image

is not corrected, the calculated actual length will not be accurate

enough.

Grammar

ZV_CALGETPIXSCALE (param, tabId)

param: ZVOBJECT type, input parameters, calibration

parameters

tabId: used to store TABLE id of pixel scale

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, ppts, param, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

455

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_CALGETPIXSCALE (param, 0)

‘get pixel scale and save result into TABLE (0)

13.4.12. ZV_CALERROR – Calibrate Error

Type Calibration

Description

Used to calibrate pixel coordinate and world coordinate of

camera, and use calibration coefficient to evaluate pixel errors

calibrated by camera.

Grammar

ZV_CALERROR (param, ppts, wpts, tabId)

 param: ZVOBJECT type, calibration coefficient

ppts: ZVOBJECT type, matrix type, pixel coordinates

wpts: ZVOBJECT type, matrix type, world coordinates

tabId: TABLE index, output parameters, calibration error, in

order, average error, minimum error, maximum error. Among

them, if the average error is less than 0.5, it is considered

excellent, 0.5--1 is good, 1--1.5 is average, and above 1.5, it is

recommended to recalibrate.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, ppts, param, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

456

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_CALERROR (param, ppts, wpts, 0)

 ‘use pixel coordinate “ppts” and word coordinate

“wpts” that are used to calibrate camera and use

calibrated calibration coefficient “param” to evaluate

pixel error calibrated by pixel, and then save result into

TABLE (0).

13.4.13. ZV_CALGETERROR – Calibrate Error

Type Calibration

Description Get calibration error.

Grammar

ZV_CALGETERROR (param, tabId)

param: ZVOBJECT type, calibration coefficient

tabId: TABLE index, output parameters, calibration error, in

order, average error, minimum error, maximum error. Among

them, if the average error is less than 0.5, it is considered

excellent, 0.5--1 is good, 1--1.5 is average, and above 1.5, it is

recommended to recalibrate.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, ppts, param, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

457

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_CALGETERROR (param, 0)

‘get calibration error and save it into TABLE (0)

13.4.14. ZV_CALTRANSI – From World to Pixel Coordinate

Type Calibration

Description
Use calibration coefficient to convert world coordinate to pixel

coordinate.

Grammar

ZV_CALTRANSI (param, pwx, pwy, tabId)

param: ZVOBJECT type, calibration coefficient

pwx: world coordinate x

pwy: world coordinate y

tabId: TABLE index, output parameters, they are pixel

coordinate x and pixel coordinate y.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, ppts, param, wpts, pwx, pwy

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

458

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_CALTRANSI (param, 10, 10, 0)

‘convert world coordinate to pixel coordinate, and save

pixel coordinate x, y into TABLE (0)

13.4.15. ZV_CALTRANSW – From Pixel to World

Type Calibration

Description
Use calibration coefficient to convert pixel coordinate to world

coordinate.

Grammar

ZV_CALTRANSW (param, pwx, pwy, tabId)

param: ZVOBJECT type, calibration coefficient

pwx: world coordinate x

pwy: world coordinate y

tabId: TABLE index, output parameters, they are world

coordinate x and world coordinate y.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, ppts, param, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_CALTRANSW (param, 10, 10, 0)

‘convert pixel coordinate to world coordinate, and save

459

world coordinate x, y into TABLE (0)

13.4.16. ZV_CALTRANSWCONTS – From Pixel to World

Type Calibration

Description
Use calibration coefficient to convert pixel coordinate of contour

point in contour or contour list to world coordinate.

Grammar

ZV_CALTRANSWCONT (param, src, dst)

param: ZVOBJECT type, calibration coefficient

src: ZVOBJECT type, input contour or contour list

dst: ZVOBJECT type, output contour or contour list

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, imgBw, contImg, ppts, wpts, param, contList,

contListDst

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_READIMAGE(contImg,"test.jpg",0)

'read the image in the original image format

ZV_THRESH(contImg,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_CALTRANSWCONTS (param, contList, contListDst)

'convert contour point pixel coordinates to world

460

coordinates

13.4.17. ZV_CALUNDISTORT – Distort Image Correction

Type Calibration

Description

Use the calibration coefficient to correct the distorted image,

correct the image to the world coordinate system plane z=0, it

supports perspective correction and radial distortion +

perspective correction, the corrected image is perpendicular to

the camera plane.

Grammar

ZV_CALUNDISTORT (param, src, dst)

param: ZVOBJECT type, calibration coefficient, the

calibration type is 1/2, if it is 0, original image is output

src: ZVOBJECT type, input distort image

dst: ZVOBJECT type, output corrected image

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

DIM w,h

ZVOBJECT img, imgSrc, imgDst, ppts, param, wpts

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_CALGETSCAPTS(img,ppts,128,0,500,5000)

'get the coordinates of the center of the circle

TABLE(0, 361, 362, 482, 362, 361, 482)

'save the input coordinate system data

ZV_MATGENDATA(wpts,3,2,0)

'generate coordinate system matrix

w = ZV_IMGWIDTH(img) 'get the width of the image

h = ZV_IMGHEIGHT(img) 'get the height of the image

ZV_CALCAM(ppts,wpts,param,w,h,2) ‘calibrate

ZV_READIMAGE(imgSrc,"test.jpg",0)

'read the image in the original image format

ZV_CALUNDISTORT (param, imgSrc, imgDst)

‘correct distort image

461

462

Chapter XIV Defect

14.1. Measurement Type Defect

14.1.1. ZV_DEFCREATEMRCONT2 –Create Contour Pair

Defect Detection Handle

Type Measurement type defect

Description

Create a contour pair measurement type defect handle, also

called a defect detector, for detecting contour pair defects. The

contour pair area to be detected is specified by a standard

contour describing its centerline. Absolute threshold mode is

used by default.

Grammar

ZV_DEFCREATEMRCONT2(cont,detector[,targetSize=30])

 cont: contour to standard center contour, ZVOBJECT type

detector: generated defect detector handle, ZVOBJECT type

targetSize: ideal width of contour, the unit is pixel, default

value 30, range greater than or equal to 5

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

14.1.2. ZV_DEFSETPARAMMR – Set Measurement Type

Defect Detection Parameters

Type Measurement type defect

Description

Set detection parameters that are used to measure defects,

parameters are different according to different measurement

types.

463

Grammar

ZV_DEFSETPARAMMR (detector,paramType,paramValue)

detector: defect detector, ZVOBJECT type, input also is

output

paraType: parameter type to be set:

contour pair measurement type defect parameters

Value Type Default value Description

1 Ideal width 30 Ideal width of edge

pair, ≥ 5

2 Width error

threshold

15 Allowable error of

edge pair width, ≥ 0

3 Position

offset

threshold

20 Allowable fluctuation

range of edge pair

width, ≥ 0

21 Filter size 7 Measured filter size,

1-31

22 Edge

threshold

25 Measured edge

gradient threshold, 1-

255

23 Polarity 0 Color polarity of edge

pair region, 0: black,

1: white

 paramValue: parameter value that is set, it must be in the

range.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

14.1.3. ZV_DEFGETPARAMMAR – Get Measurement Type

Defect Detection Parameters

Type Measurement type defect

Description Get measurement type defect detection parameters.

Grammar
ZV_DEFGETPARAMMAR (detector, paramType, tabId)

detector: defect detector, ZVOBJECT type

464

paramType: parameter type to be obtained, refer to

ZV_DEFSETPARAMMR

tabId: obtained parameter value, output parameters, TABLE

index

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

14.1.4. ZV_DEFAPPLYMR – Detect Measurement Type

Defects

Type Measurement type defect

Description

Execute detection of measurement type defects, but the specific

is determined by measurement handle “detector”, so detect

corresponding defects according to description of creating

command handle.

Grammar

ZV_DEFAPPLYMR(detector,src,def)

detector: measurement type defect detector, ZVOBJECT

type

src: input single-channel image

def: defect result, ZVOBJECT type, output

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

14.2. Result Obtaining

14.2.1. ZV_DEFGETOBJECT – Obtain ZVOBJECT Object in

Defects Result

Type Defect result

Description Get ZVOBJECT object from defect result.

465

Grammar

ZV_DEFGETOBJECT (def, obj, type)

def: defect result, obtained by defect detection type

algorithm

obj: obtained ZVOBJECT type data of defect result.

type: type to obtain ZVOBJECT object:

Value rst type obj type Description

2

Contour

pair defect

Contour

list

Defect contour list, each

contour means one

defect, that is external

contour of defect region.

5

Standard contour list of

defect, each contour

means one defect, that is

standard contour

corresponding to defect.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

14.2.2. ZV_DEFGETVALUE – Obtain Value Parameters in

Defect Result

Type Defect result

Description Get value parameters in defect result.

466

Grammar

ZV_DEFGETVALUE (rst, type, maxNum, tabId)

rst: defect result, obtained by defect detection type

algorithm

type: defect value parameter type

Value rst type Description

1 All types
The number of defects, one

parameter

12
Contour

pair defect

The defect type of the contour pair

defect, multiple defects are

arranged in sequence, the number

can be obtained according to the

number of defects or the length of

the defect contour list, the value

range is 1 - disconnection, 2 -

spacing is too small, 3 - spacing is

too large, 4 - position deviation is

large

maxNum: the max valid number of TABLE

tabId: obtained value, output parameter, TABLE index

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

14.2.3. ZV_DEFGETINFO – Obtain Middle Information of

Defect Detection

Type Defect result

Description
Get ZVOBJECT type middle information in defect detection,

which can be used to help showing.

467

Grammar

ZV_DEFGETINFO (def, obj, type)

def: defect result, obtained by defect detection type

algorithm

obj: obtained middle ZVOBJECT object, output parameters.

type: type of middle object information

Value rst type obj type Description

31

Contour

pair defect

Contour

list

The first measured

contour of contour pair

defect detection, the

contour composed of the

first measurement points

along the measurement

scanning direction.

32

The second measured

contour of contour pair

defect detection, the

contour composed of the

second measurement

points along the

measurement scanning

direction.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

468

Chapter XV Drawing

15.1. ZV_COLOR – Generate Color

Type Drawing

Description Use r, g, b to generate color value.

Grammar

value = ZV_COLOR (r, g, b)

r: red color value, [0, 255]

g: green color value, [0, 255]

b: blue color value, [0, 255]

returned value: color value

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

value = ZV_COLOR (255, 0, 0)

‘generate red, select which color you want according to

RGB chromatogram, usually it is used as parameters.

15.2. ZV_POINTS – Point Set

Type Drawing

Description Draw point set.

Grammar

ZV_POINTS (img, pts, color)

img: ZVOBJECT type, target image to be drawn

pts: ZVOBJECT type, n x 2 matrix

color: line color, ZV_COLOR (r, g, b) can be used to generate

the image when img is color image, and when img is black and

white image, get value [0, 255], for example, black 0, gray 128,

white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

469

15.3. ZV_LINE – Straight Line

Type Drawing

Description Draw straight line.

Grammar

ZV_LINE(img,x1,y1,x2,y2,color)

img: ZVOBJECT type, target image to be drawn

x1: x coordinate of line’s point 1

y1: y coordinate of line’s point 1

x2: x coordinate of line’s point 2

y2: y coordinate of line’s point 2

color: color of line, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img,"test.jpg",0)

'read the image in the original image format

ZV_LINE(img,0,0,5,5,ZV_COLOR(255,0,0))

'draw a red straight line in the target image

15.4. ZV_CONTOUR – Contour

Type Drawing

Description Draw contour

Grammar

ZV_CONTOUR (img, cont, color)

img: ZVOBJECT type, target image to be drawn

cont: ZVOBJECT type, contour

color: color of contour, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Controller It is valid in controllers that support ZV function or they belong

470

to 5XX series or above.

Example

DIM count

ZVOBJECT img, gray, dst, imgBw, contList, contSrc

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_IMGCOPY(img,gray) 'copy image

ZV_IMGSETCONST(gray,0) 'constant fill image

ZV_GRAYTORGB(gray,dst)

'convert grayscale image to color image

count = ZV_LISTCOUNT(contList)

'get the number of contour lists

FOR i = 0 TO count-1

ZV_LISTGET(contList, contSrc,i) 'get a certain contour

ZV_CONTOUR(dst,contSrc,ZV_COLOR(0,255,0))

'draw the outline in green

NEXT

15.5. ZV_CONLIST – Contour List

Type Drawing

Description Draw contour list

Grammar

ZV_CONTLIST(img, contlist, color, autoColor)

img: ZVOBJECT type, target image to be drawn

cont: ZVOBJECT type, contour list

color: color of contour list, ZV_COLOR (r, g, b) can be used

to generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

autoColor: whether sets color automatically, 3 means

different colors are set automatically, color will not be used, for

black and white image, only white will be drawn.

471

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, gray, imgBw, dst, contList

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_THRESH(img,imgBw,200,255) 'image binarization

ZV_CONTGEN(img, imgBw,contList,1,0)

'save all the found contours into the contour list

ZV_IMGCOPY(img,gray) 'copy image

ZV_IMGSETCONST(gray,0) 'constant fill image

ZV_GRAYTORGB(gray,dst)

'convert grayscale image to color image

ZV_CONTLIST (dst, contList, ZV_COLOR (0, 255, 0), 0)

‘draw the contour

15.6. ZV_RECT – Rectangle

Type Drawing

Description Draw rectangle.

Grammar

ZV_RECT (img, x, y, w, h, color)

img: ZVOBJECT type, target image to be drawn

x: left corner x coordinate of rectangle

y: left corner y coordinate of rectangle

w: rectangle width

h: rectangle height

color: color of rectangle, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

472

ZV_RECT (img, 200, 200, 100, 100, ZV_COLOR (255, 0, 0)

‘draw red rectangle at position 200, 200 in target image

15.7. ZV_RECT2 – Rotate Rectangle

Type Drawing

Description Draw rotate rectangle.

Grammar

ZV_RECT2 (img, cx, cy, w, h, angle, color)

img: ZVOBJECT type, target image to be drawn

cx: rotate rectangle center x coordinate

cy: rotate rectangle center y coordinate

w: rotate rectangle width

h: rotate rectangle height

angle: rectangle rotate angle

color: color of rotate rectangle, ZV_COLOR (r, g, b) can be

used to generate the image when img is color image, and when

img is black and white image, get value [0, 255], for example,

black 0, gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_RECT2 (img, 20, 20, 100, 100, 30, ZV_COLOR (255, 0, 0)

‘draw rotate rectangle in target image

15.8. ZV_CIRCLE – Circle

Type Drawing

Description Draw circle.

Grammar

ZV_CIRCLE (img, cx, cy, r, color)

img: ZVOBJECT type, target image to be drawn

cx: circle center x coordinate

473

cy: circle center y coordinate

r: circle’s radius

color: color of circle, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_CIRCLE (img, 30, 30, 10, ZV_COLOR (255, 0, 0)

‘draw one red circle with a radius of 10 at position 30,

30 of image “img”.

15.9. ZV_ELLIPSE -- Ellipse

Type Drawing

Description Draw ellipse.

Grammar

ZV_ELLIPSE (img, cx, cy, xr, yr, angle, color)

img: ZVOBJECT type, target image to be drawn

cx: ellipse center x coordinate

cy: ellipse center y coordinate

xr: major-axis length of ellipse in the x direction

yr: minor-axis length of ellipse in the y direction

angle: rotate angle of ellipse

color: color of ellipse, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example
ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

474

'read the image in the original image format

ZV_ELLIPSE (img, 10, 10, 5, 5, 20, ZV_COLOR (255, 0, 0)

‘draw the ellipse in the target image

15.10. ZV_ELLIPSEARC – Ellipse Arc

Type Drawing

Description

Draw the ellipse arc from starting angle to end angle in

clockwise, if the starting angle is less than end angle, then

reverse the direction (from end angle to starting angle).

Grammar

ZV_ELLIPSEARC (img, cx, cy, xr, yr, angle, startAngle, endAngle,

color)

img: ZVOBJECT type, target image to be drawn

cx: ellipse arc center x coordinate

cy: ellipse arc center y coordinate

xr: major-axis length of ellipse arc in the x direction

yr: minor-axis length of ellipse arc in the y direction

angle: rotate angle of ellipse arc, in clockwise, unit – degree

startAngle: starting angle of ellipse arc, in clockwise, unit –

degree

endAngle: end angle of ellipse arc, in clockwise, unit –

degree

color: color of ellipse arc, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_ELLIPSEARC (img, 100, 100, 200, 200, 60, 120, 160,

ZV_COLOR (255, 0, 0)

‘draw the ellipse arc in the target image

475

15.11. ZV_ELLIPSEARCBYPTS – Ellipse Arc

Type Drawing

Description
Draw the ellipse arc from starting point to end point in given

direction.

Grammar

ZV_ELLIPSEARCBYPTS (img, cx, cy, xr, yr, angle, stx, sty, endx,

endy, dir, color)

img: ZVOBJECT type, target image to be drawn

cx: ellipse arc center x coordinate

cy: ellipse arc center y coordinate

xr: major-axis length of ellipse arc in the x direction

yr: minor-axis length of ellipse arc in the y direction

angle: rotate angle of ellipse arc, in clockwise, unit – degree

stx: x coordinate of ellipse arc’s starting point

sty: y coordinate of ellipse arc’s starting point

endx: x coordinate of ellipse arc’s end point

endy: y coordinate of ellipse arc’s end point

dir: the direction, 1: anticlockwise, -1: clockwise

color: color of ellipse arc, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Note: starting point and end point are used to help calculate

starting and end angles of ellipse arc, but the real angles depend

on ellipse center and major and minor axes.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_ELLIPSEARCBYPTS (img, 320, 240, 80, 60, 0, 400, 240, 320,

300,-1,ZV_COLOR(255,0,0)

‘in the target image, draw from start point (400, 240)

top end point (320, 300) in clockwise

476

15.12. ZV_POLYGON – Polygon

Type Drawing

Description Draw polygon.

Grammar

ZV_POLYGON (img, pts, idClosed, color)

img: ZVOBJECT type, target image to be drawn

pts: ZVOBJECT type, polygon point sequence to be drawn,

rectangle type

isClosed: whether is closed, 0 – open, 1 - closed

color: color, ZV_COLOR (r, g, b) can be used to generate the

image when img is color image, and when img is black and white

image, get value [0, 255], for example, black 0, gray 128, white

255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

TABLE (0, 0, 1, 2, 3, 4, 5, 6, 7) ‘save data into TABLE (0)

ZV_MATGENDATA (pts, 4, 2, 0)

ZV_POLYGON (img, pts, 0, ZV_COLOR (255, 0, 0)

‘draw the polygon in the target image

15.13. ZV_ARROW – Arrow

Type Drawing

Description Draw arrow.

Grammar

ZV_ARROW (img, x1, y1, x2, y2, size, color)

img: ZVOBJECT type, target image to be drawn

x1: x coordinate of arrow’s starting point

y1: y coordinate of arrow’s starting point

x2: x coordinate of arrow’s end point

y2: y coordinate of arrow’s end point

size: size of arrow

477

color: color, ZV_COLOR (r, g, b) can be used to generate the

image when img is color image, and when img is black and white

image, get value [0, 255], for example, black 0, gray 128, white

255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_ARROW (img, 10, 10, 50, 50, 10, ZV_COLOR (255, 0, 0)

‘draw the green arrow in the target image

15.14. ZV_MARKER – Mark

Type Drawing

Description Draw markable shaped, like, star, triangle, cross, etc.

Grammar

ZV_MARKER (img, x, y, type, size, color)

img: ZVOBJECT type, target image to be drawn

x: x coordinate of drawing position

y: y coordinate of drawing position

type: mark type to be drawn

type Description

0 Cross

1 Oblique cross (X)

2 Star

3 Diamond shape

4 Square

5 Triangle

6 Inverted triangle

size: mark size to be drawn

color: color, ZV_COLOR (r, g, b) can be used to generate the

image when img is color image, and when img is black and white

image, get value [0, 255], for example, black 0, gray 128, white

255.

478

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_MARKER (img, 100, 100, 0, 10, ZV_COLOR (255, 0, 0)

‘draw one cross

15.15. ZV_TEXT -- Text

Type Drawing

Description
Output character string “str” in image “img”, Chinese is

supported, and font information is set by system parameters.

Grammar

ZV_TEXT (img, str, x, y, size, color)

img: ZVOBJECT type, target image to be drawn

str: character string to be drawn

x: x coordinate of drawing position

y: y coordinate of drawing position

size: font pixel size

color: color of text, ZV_COLOR (r, g, b) can be used to

generate the image when img is color image, and when img is

black and white image, get value [0, 255], for example, black 0,

gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_TEXT (img, “hello”, 100, 100, 10, ZV_COLOR (255, 0, 0)

‘write the text with a pixel of 10 at 100, 100 in “img”, the

color is white

479

15.16. ZV_MASK – Mask Image

Type Drawing

Description

Draw “mask”, that is, set mask whose pixel is 0 corresponding

to image “img” as 0 (fillFore is 0), or set whose pixel is 255 as

255 (fillFore is 1).

Grammar

ZV_MASK (img, mask, fillFore)

img: ZVOBJECT type, target image to be drawn

mask: ZVOBJECT type, mask image

fillFore: whether fills the foreground color, if it is 1, the

foreground color 255 will be filled, otherwise, 0 will be filled.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, mask

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_IMGCOPY (img, mask) ‘copy image

ZV_IMGSETCONST (mask, 0) ‘constant fills image

FOR i=10 TO 10

FOR j=10 TO 10

ZV_IMGSETVAL(mask,i,j,0,1) ‘modify image’s value

NEXT

NEXT

ZV_MASK(img,mask,1)

‘draw target image, fill in foreground color

15.17. ZV_REGION – Region

Type Drawing

Description Draw the region that is based on run-length coding.

Grammar

ZV_REGION (img, re, type, color)

img: ZVOBJECT type, target image to be drawn, single-

channel or 3-channel 8U type

re: ZVOBJECT type, region of run-length coding

type: drawing type, 0 – draw valid part of re, 1 – draw invalid

480

part of re, 2 – draw edge part outside re

color: color of drawing region, ZV_COLOR (r, g, b) can be

used to generate the image when img is color image, and when

img is black and white image, get value [0, 255], for example,

black 0, gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_REGENRECT (re, 0, 0, 100, 100)

ZV_REGION (img, re, 0, 255)

‘in image “img”, draw specified region, 255 color value.

15.18. ZV_MEASURER – Measurement Region

Type Drawing

Description Draw the measurer.

Grammar

ZV_MEASURER (img, mr, color, subColor)

img: ZVOBJECT type, target image to be drawn

mr: ZVOBJECT type, the measurer to be drawn.

color: main color of measurer

subColor: measurer sub-region’s color, ZV_COLOR (r, g, b)

can be used to generate the image when img is color image, and

when img is black and white image, get value [0, 255], for

example, black 0, gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, re

ZV_READIMAGE(img, "test.jpg",0)

'read the image in the original image format

ZV_REGENRECT (mr, 20, 20, 100, 100)

‘generate rectangle measurer

ZV_MEASURER (img, mr, ZV_COLOR (255, 255, 255), ZV_COLOR

481

(255, 255, 255)

‘generate measurer in target image

15.19. ZV_DRASHAPEMATCH – Shape Template

Type Drawing

Description Draw shape template.

Grammar

ZV_DRASHAPEMATCH (img, mod, matchRst, stats, color1,

color2)

img: ZVOBJECT type, target image to be drawn

mod: ZVOBJECT type, shape template or shape template

list

matchRst: ZVOBJECT type, matching result, matrix type, n

rows 5 columns, one matching target of each row, they are

matching score “score”, coordinate x, coordinate y, rotate angle

“angle”, scaling “scale” in order.

stats: ZVOBJECT type, template contour point matching

state, image type, n rows m columns, each row has one template

contour, and matching state of template contour point can be

saved in order, 1 – success, 0 – failure, and the number of rows

are same as the rows number of matchs.

color 1: color of successful matching, ZV_COLOR (r, g, b)

can be used to generate the image when img is color image, and

when img is black and white image, get value [0, 255], for

example, black 0, gray 128, white 255.

color 2: color of fail matching, ZV_COLOR (r, g, b) can be

used to generate the image when img is color image, and when

img is black and white image, get value [0, 255], for example,

black 0, gray 128, white 255.

Controller
It is valid in controllers that support ZV function or they belong

to 5XX series or above.

Example

ZVOBJECT img, clrImg, mod, matchImg, rlts, stats

ZV_READIMAGE(img, "model.jpg",0)

'read the image in the original image format

482

ZV_SHAPECREATE(img,mod,0,360,1,1,50,0,0,0,0)

'create template

ZV_READIMAGE (matchImg, "1.png", 0)

'read the image in the original image format

ZV_SHAPEFINDST (mod, matchImg, rlts, stats, 90, 1, 0, -1, 3, 9,

0) 'template matching

ZV_GRAYTORGB (matchImg, clrImg)

'convert grayscale image to RGB image

ZV_DRASHAPEMATCH (clrImg, mod, rlts, stats,

ZV_COLOR(0,255,0), ZV_COLOR(255,0,0))

'draw the template on the color image, and the contour

points that match successfully are drawn in green, and

the contour points that fail to match are drawn in red.

483

Chapter XVI Vision Usage Examples

16.1. Coordinate System Calibration

Example 1:

Extract the pixel coordinates of the mark point through the solid circle calibration plate

(the world coordinate corresponding to the known mark point), and calibrate the

relationship between the pixel and the world coordinate system.

‘calibrate parameter array, they are calibration type, contrast, polarity, minimal area,

maximal area in order.

GLOBAL DIM d_ca_param(5)

DIM w,h 'width and height of calibration plate image

w = 640

h = 480

d_ca_param(0) = 0 'calibration type

d_ca_param(1) = 120 'contrast

d_ca_param(2) = 0 'polar-black mark point

d_ca_param(3) = 80 'minimum area

d_ca_param(4) = 20000 'maximum area

ZVOBJECT calImg 'calibration plate image

ZVOBJECT pptsIn, ppts, wpts 'pixel coordinates and world coordinates

ZVOBJECT ca_param 'calibration parameters

'extract the pixel coordinates of the mark point on the calibration plate

ZV_CALGETSCAPTS (calImg, pptsIn, d_ca_param(1), d_ca_param(2), d_ca_param(3),

d_ca_param(4))

'process the world coordinates wpts corresponding to the pixel coordinates ppts

ZV_CALGETPTSMAP (pptsIn, ppts, wpts, 5)

'calibration

ZV_CALCAM (ppts, wpts, ca_param, w, h, d_ca_param(0))

'calculate the calibration error, TABLE(0), TABLE(1), TABLE(2) are the average error,

minimum error, and maximum error respectively

484

ZV_CALERROR(ca_param, ppts, wpts, 0)

'save calibration parameters

ZV_CALWRITE(ca_param, "calib.zvb")

Example 2:

Extract the pixel coordinates of the mark point through the solid circle calibration plate,

and use distance of “mark” points and take left upper corner “mark” point as world origin

to calculate word coordinates automatically (this method is used for size measurement

that doesn’t concern about world coordinate system origin), and calibrate the relationship

between the pixel and the world coordinate system.

‘calibrate parameter array, they are calibration type, contrast, polarity, minimal area,

maximal area in order.

GLOBAL DIM d_ca_param(6)

DIM w,h 'width and height of calibration plate image

w = 640

h = 480

d_ca_param(0) = 0 'calibration type

d_ca_param(1) = 120 'contrast

d_ca_param(2) = 0 'polar-black mark point

d_ca_param(3) = 80 'minimum area

d_ca_param(4) = 20000 'maximum area

d_ca_param(5) = 10 ‘mark points’ distance

ZVOBJECT calImg 'calibration plate image

ZVOBJECT pptsIn, ppts, wpts 'pixel coordinates and world coordinates

ZVOBJECT ca_param 'calibration parameters

'extract the pixel coordinates of the mark point on the calibration plate

ZV_CALGETSCAPTS (calImg, pptsIn, d_ca_param(1), d_ca_param(2), d_ca_param(3),

d_ca_param(4))

'calculate world coordinate wpts according to mark point distance

ZV_CALGETPTSMAP (pptsIn, ppts, wpts, d_ca_param(5))

'calibration

485

ZV_CALCAM (ppts, wpts, ca_param, w, h, d_ca_param(0))

'calculate the calibration error, TABLE(0), TABLE(1), TABLE(2) are the average error,

minimum error, and maximum error respectively

ZV_CALERROR(ca_param, ppts, wpts, 0)

'save calibration parameters

ZV_CALWRITE(ca_param, "calib.zvb")

Example 3:

Use 9-point calibration method (get pixel coordinate of “mark” through positioning 9

times, and read machine world coordinates 9 times at the same time) to calibrate the

relationship between the pixel and the world coordinate system, the method is to control

machine to move 9 times, then moves the field-shaped nine-square grid in rows first and

then in rows.

‘TABLE 61-78, pixel coordinate, 9 coordinates, 18 data, x, y, x, y….

‘TABLE 81-98, world coordinate, 9 coordinates, 18 data, x, y, x, y….

GLOBAL DIM d_ca_param(7) ‘match parameters

DIM w,h 'width and height of image obtained by camera

d_ca_param(0) = 120 'set left corner x position of nine-square (under machine

coordinate system)

d_ca_param(1) = -220 'set left corner y position of nine-square (under machine

coordinate system)

d_ca_param(2) = 10 'distance of nine-square (under machine coordinate system)

d_ca_param(3) = 1 'calibration type

d_ca_param(4) = 0 'average error

d_ca_param(5) = 0 'minimal error

d_ca_param(6) = 0 'maximum error

d_ca_param(5) = 10 ‘mark points’ distance

ZVOBJECT grabImg 'camera samples image

ZVOBJECT ppts, wpts 'pixel coordinates and world coordinates

ZVOBJECT ca_param 'calibration parameters

ZVOBJECT s_mod ‘created template

BASE (0, 2) ‘set axis x and axis y

486

‘move nine-square in cycle

DIM cnt

cnt = 0

FOR i = 0 to 2

FOR j = 0 to 2

 ‘motion delays 500ms

 MOVE_DELAY (500)

 ‘move to sample position

 MOVEABS(d_calib_param(0) + j * d_calib_param(2), d_calib_param(1) + i *

d_calib_param(2))

WAIT until IDLE(0) and IDLE(2)

‘send soft trigger signal

CAM_SETPARAM (“TriggerSoftware”, 0)

‘sample one image

CAM_GET (grabImg, 0)

‘shape matching and positioning mark point

ZV_SHAPEFIND(s_mod,grabImg,match_rst,d_match_param(0),d_match_param(

1),d_match_param(2),d_match_param(3),d_match_param(4),d_match_param(5),d_matc

h_param(6))

‘extract matching result

ZV_MATGETROW (match_rst, 0, 5, 0)

‘save pixel coordinate into TABLE

TABLE (61 + cnt*2) = TABLE (1)

TABLE (61 + cnt*2+1) = TABLE (2)

‘save machine coordinate into TABLE

TABLE (81 + cnt*2) = DPOS (0)

TABLE (81 + cnt*2+1) = DPOS (2)

cnt = cnt + 1

NEXT

NEXT

'convert pixel and world coordinates in TABLE into matrix

ZV_MATGENDATA(ppts, 9, 2, 61)

487

ZV_MATGENDATA(wpts, 9, 2, 81)

'calibration

ZV_CALCAM (ppts, wpts, ca_param, w, h, d_ca_param(3))

'calculate the calibration error, TABLE(0), TABLE(1), TABLE(2) are the average error,

minimum error, and maximum error respectively

ZV_CALERROR(ca_param, ppts, wpts, 0)

'save calibration parameters

ZV_CALWRITE(ca_param, "calib.zvb")

16.2. Acquisition by Soft Trigger

'acquire a single image in soft trigger mode

DIM cam_cnt

ZV0BJECT img

CAM_SCAN("mvision") 'scan Hikvision camera

cam_cnt = CAM_COUNT() 'get the number of scanned cameras

IF (0 = cam_cnt) THEN 'If the number of scanned cameras is 0, return

PRINT "camera not found"

RETURN

ENDIF

CAM_SEL(0) 'select the camera with serial number 0

CAM_SETMODE(0) 'set the trigger mode as soft trigger mode

CAM_START(1) 'enable camera acquisition and specify the number of buffer as 1

CAM_SETPARAM("TriggerSoftware", 0)

'use soft trigger command parameters to trigger the

camera to take pictures, and take pictures once every time

it is triggered.

CAM_GET(img,0) 'get the image with the specified id No 0 in the camera

buffer and store it in the img image

488

16.3. Acquisition By External Trigger

'acquire a single image in external trigger mode

DIM cam_cnt

ZV0BJECT img

CAM_SCAN("mvision") 'scan Hikvision camera

cam_cnt = CAM_COUNT() 'get the number of scanned cameras

IF (0 = cam_cnt) THEN 'If the number of scanned cameras is 0, return

PRINT "camera not found"

RETURN

ENDIF

CAM_SEL(0) 'select the camera with serial number 0

CAM_SETMODE(0) 'set the trigger mode as external trigger mode

CAM_START(1) 'enable camera acquisition and specify the number of buffer as 1

MOVE_OP (0, ON)

MOVE_OP (0, OFF) ‘set as falling edge to trigger taking photos, operate OUT

when falling edge, then trigger to take photos

CAM_GET(img,0) 'get the image with the specified id No 0 in the camera

buffer and store it in the img image

16.4. Contour Position

DIM num

ZVOBJECT img 'image

ZVOBJECT subImg 'sub image

ZV_IMGGETSUB(img, subImg, s_x, s_y, s_w, s_h) 'get the sub-image from img into subImg

ZV_THRESH(subImg, subImg, thresh0, thresh1) 'threshold image

ZV_OPENING(dst, dst, 5) 'opening operation

ZV_CONTGEN(dst, contours, 0, 0) 'get the outer contour through point set method

ZV_CONTFILTER(contours, 0, 1500, 3000, 0)

'retain contours with an area within the range of 1500-3000

ZV_CONTFILTER(contours, 5, 0.9, 1.0, 0)

'retain contours with roundness in the range of 0.9-1.0

489

ZV_CONTSORT(contours,5,0) 'sort contours in descending order based on roundness

ZV_CONTFILTER(contours, -1, 0, 0, 0) 'select the contour with serial number 0

ZV_LISTGET(contours,contour,0) 'get the contour numbered 0 from the contour list

num = ZV_CONTCOUNT(contour) 'get the number of contour points

IF num < 1 THEN

PRINT "ERROR: Contour Abnormal!"

ENDIF

ZV_CONTCENTER(contour,0) 'output the x y of the contour position into TABLE(0)TABLE(1)

16.5. Line Intersection Positioning

'Intersection and endpoint of two straight lines

DIM sectx, secty

DIM x11,y11,x12,y12,x21,y21,x22,y22

'generate the measurement area and set the measurement parameters, and generate the

measurer of first straight line

ZV_MRGENLINE(mr1, cx, cy, w, h, angle, interp, sub_num, sub_width)

ZV_MRSETADV(mr1,filter_size,thresh,polar,select)

'generate the measurement area and set the measurement parameters, and generate the

measurer of second straight line

ZV_MRGENLINE(mr2, cx2, cy2, w2, h2, angle2, interp, sub_num, sub_width)

ZV_MRSETADV(mr2,filter_size,thresh,polar,select)

'measure the straight line and put the end points of the straight line into the TABLE (0)

and TABLE (10) respectively.

ZV_MRLINE(mr1, img, rstMat, 0)

ZV_MRLINE(mr2, img, rstMat, 10)

x11 = TABLE(0)

y11 = TABLE(1)

x12 = TABLE(2)

y12 = TABLE(3)

x21 = TABLE(4)

490

y21 = TABLE(5)

x22 = TABLE(6)

y22 = TABLE(7)

'calculate whether two points intersect and put the intersection point into TABLE (0), and

return whether the straight lines intersect.

LOCAL is_paral

is_paral = ZV_INTERSECTLL(x11,y11,x12,y12,x21,y21,x22,y22, 0)

IF 0 <> is_paral THEN

print "straight lines parallel"

ENDIF

'get the straight line intersection point

sectx = TABLE(0)

secty = TABLE(1)

16.6. Vector Correction

'calculate the transformation matrix based on the current and reference vectors

ZV_GETRIGIDVECTOR(mat, new_x, new_y, new_angle, base_x, base_y, base_angle)

'the position before correction is stored in the TABLE (0)

TABLE(0,s_x,s_y)

'position correction

ZV_AFFINETRANS(mat, 1, 0, 10)

d_x = TABLE(10)

d_y = TABLE(11)

16.7. Two-Point Correction

'put the two points before and after the transformation into TABLE(0) and TABLE(10)

491

respectively

TABLE(0, base_x1, base_y1, base_x2, base_y2)

TABLE(10, new_x1, new_y1, new_x2, new_y2)

'get the rigid transformation matrix mat based on two points

ZV_GETRIGID(mat, 0, 10)

'the position before correction is stored in the TABLE (20)

TABLE(20,s_x,s_y)

'position correction

ZV_AFFINETRANS(mat, 1, 20, 30)

d_x = TABLE(30)

d_y = TABLE(31)

16.8. Measurement Position Correction

ZVOBJECT modImg, model, mr

'take the sub-image of the interesting part as a template image

ZV_IMGGETSUB(img1, modImg, s_x, s_y, s_w, s_h)

'create a template or read the template directly. Generally, it is loaded from a file during

software initialization.

ZV_SHAPECREATE(modImg,model,angle_st,angle_end,scale_min,scale_max,thresh,num

_level,pt_reduce,angle_step,scale_step)

'generate a circle measurer and set measurement parameters

ZV_MRGENCIRCLE(mr,cx,cy,r,ann_r,start_angle,ext_angle,interp,sub_num,sub_w)

ZV_MRSETADV(mr,filter_size,thresh,polar,select)

'the reference position of positioning matching can be combined with the current

matching results to correct the measurement area

DIM base_pos(3)

base_pos(0, base_x, base_y, base_a)

'shape matching gets the current matching result

ZV_SHAPEFIND(model,img,matchs,min_score,nums,min_dist,min_thresh,

accuracy, speed, polar)

'get the matching results of the first row into TABLE(0)

492

ZV_MATGETROW(matchs,0,5,0)

'generate transformation matrix based on baseline and current results

ZV_GETRIGIDVECTOR(mat,base_pos(0),base_pos(1),base_pos(2),TABLE(1),TABLE(2),

TABLE(3))

'use the transformation matrix to correct the measurement area, that is, how much the

current matching result is translated or rotated relative to the benchmark matching result,

the measurement area also translates and rotates by the same amount.

ZV_MRCORRECT(mr, mat, corr_mr)

'measure the circle using the corrected measurement area

ZV_MRCIRCLE(corr_mr,img,mat_pts,10)

'get the measured circle result

cx = TABLE(10)

cy = TABLE(11)

radius = TABLE(12)

16.9. File Operation

For 5XX series controllers, C: represents the /zmc/flash/ directory.

➢ Creation of file directory

FILE "MAKE_DIR", "C:/test/"

'create a test directory under the /zmc/flash/ directory

➢ Copy of files

FILE "FLASH_COPY", "C:/src.bmp","C:/dst.bmp"

'copy the image src.bmp in the /zmc/flash/ directory to dst.bmp

➢ Deletion of files

FILE "FLASH_DEL", "C:/src.bmp"

'delete the image src.bmp in the /zmc/flash/ directory

493

Chapter XVII Appendix

17.1. Knowledge Expansion

17.1.1. Matrix

A rectangular number table with m rows and n columns arranged by m × n numbers aij (i

= 1,2⋯m, j = 1,2⋯n) is called a matrix of m rows and n columns (m × n matrix), and this

number of m × n are elements of matrix A, aij is called the element i rows j columns of

matrix A, the i is the rows, the j is the columns. So, matrix can be written as A = (aij) or A =

(aij) m × n / A m × n

17.1.1.1. Transpose

Replace the rows of the m × n matrix A with columns of the same order to obtain an n ×

m matrix. This matrix is called the transposed matrix of A, denoted AT or A'.

Basis Properties:

⚫ (AT)T = A

⚫ (A + B)T = AT + BT

⚫ (kA)T = kAT

⚫ (AB)T = BT + AT

For example:

The transpose matrix is

494

17.1.1.2. Reverse Torque

Suppose A is a n order matrix, and there is another n order matrix B, then make AB = BA =

E, that is, matrix A is reverse, and matrix B is the reverse matrix of A.

Basis Properties:

⚫ The status of A and B is equal, so the two matrices A and B are inverse matrices of

each other. It is also said that A is the inverse matrix of B.

⚫ Unit matrix E is reverse, that is, E = E -1

⚫ Zero matrix is not reverse.

⚫ If A is reverse, then reverse matrix of matrix A is unique.

⚫ If A is reverse, then A -1 also is reverse, and (A-1)-1 = A

⚫ If A is reverse, then AT also is reverse, and (AT)-1 = (A-1)T

⚫ If A and B are the same order matrix and they are both reverse, then AB are reverse,

and (AB)-1 = B-1A-1

For example:

17.1.1.3. Matrix Multiplication

Suppose A is the matrix of m × P, B is the matrix of n × P, then the multiple of m × n ‘s

matrix A and B as C = AB, and i rows and j columns of matrix C can be represented as:

Basis Properties:

⚫ (AB)C = A(BC)

⚫ (A + B) C = AC + BC

⚫ C (A + B) = CA + CB

495

⚫ k (AB) = (kA)B + A(kB)

For Example:

17.1.2. Image

17.1.2.1. Image Multiplication

Image multiplication is the point-to-point multiplication of two images, suppose the

image size is m × n, G = FH, then i rows and j columns element of matrix G can be

represented as: g(x, y)ij = f(x, y)ij·h(x, y)ij

For Example:

17.1.2.2. Image Division

Image division is the point-to-point division of two images, suppose the image size is m

÷ n, G = F ÷ H, then i rows and j columns element of matrix G can be represented as: g(x,

y)ij = f(x, y)ij ÷ h(x, y)ij

For Example:

496

17.1.2.3. Norm

Norm is the function that is with “length” concept. Suppose image F size is m × n, then,

⚫ Norm 1:

⚫ Norm 2:

⚫ Infinite norm:

Basic Properties:

⚫ For any set of basis for a finite-dimensional normed linear space, the norm is a

continuous function of the coordinates of the elements.

⚫ All norms of finite-dimensional linear spaces are equivalent.

⚫ A finite-dimensional linear space over the real number field must be complete.

⚫ The necessary and sufficient condition for a sequence in a finite-dimensional

normed linear space to converge according to coordinates is that it converges

according to any norm.

For Example: if image F is:

Then:

⚫ Norm 1:

⚫ Norm 2:

⚫ Infinite norm:

497

17.1.2.4. Distance Between Pixels

An important concept describing the connection between pixels is the distance between

pixels. Given three pixels p, q, r, the coordinates are (x, y), (s, t), (u, v) respectively, if the

following conditions are met, the function D is said to be a distance measurement

function.

(1) D(p, q) ≥ 0 (D(p, q) = 0, and this is only valid when p = q.

(2) D(p, q) = D(p, q)

(3) D(p, r) ≤ D(p, q) + D(q, r)

Among the above three conditions, the first condition indicates that the distance between

two pixels is always positive (when the two pixels have the same spatial position, the

distance between them is zero). The second condition indicates that the distance

between two pixels is irrelevant to the choice of start and end points. The condition 3

indicates that the shortest distance between two pixels is along a straight line.

In digital images, distances are measured in different ways. The Euclidean distance

between points p and q (that is, the distance with norm 2) is defined as:

DE(p,q) = [(x-s)2 + (y-t)2]1/2

According to this distance measure, pixels whose distance from (x, y) is less than or equal

to some value d are included in a circle with (x, y) as the center and d as the radius.

The D4 distance between points p and q (that is, the distance with a norm of 1) is also

called the urban distance and is defined as:

D4(p,q) = |x-s| + |y-t|

According to this distance measure, pixels whose distance from D4 (x, y) is less than or

equal to some value d are included in a diamond with (x, y) as the center.

The D8 distance between points p and q (that is, the distance with norm ∞) is also called

the checkerboard distance and is defined as:

D8(p,q) = max(|x-s|, |y-t|)

According to this distance measure, pixels whose distance from D8 (x, y) is less than or

equal to some value d are included in a square with (x, y) as the center.

498

17.1.2.5. Image Average Value

Suppose the image F size is m × n, then:

For Example: if image F is:

Then:

17.1.2.6. Image Variance

Suppose the image F size is m × n, then:

For Example: if image F is:

Then:

17.1.2.7. Histogram

A histogram is an abstract representation of an image. By modifying or changing the

image histogram, the grayscale distribution of the image pixels can be changed, thereby

achieving image enhancement. Histograms are obtained through statistics of images. For

499

a grayscale image, its grayscale histogram reflects the statistics of different grayscale

levels in the image.

h(f) = nf f = 0,1, ⋯, L – 1

nf is the number of pixels that are with grayscale value f in image f(x,y).

For Example:

17.1.2.8. Color Space

⚫ RGB

According to the structure of the human eye, there are three basic color-sensing cone

cells in the human retina, and human perception of color is the result of the three types of

cells working together. In this way, all colors can be considered as the three basic colors

of red (R), green (G) and blue (B).

C = rR + gG + bB: C means one certain color, R, G, B mean three basic colors, r, g, b

represent scaling coefficient.

500

⚫ HIS

The most commonly used model for color processing is the HSI model, where H

represents hue, S represents saturation, and I represents density. The three components

of HSI correspond to the three basic characteristic quantities commonly used by people

to describe colors, namely brightness, hue and saturation.

⚫ HSV

The HSV model is closer to human perception of color than the HSI model. H in the HSV

model represents hue, S represents saturation, and V represents brightness value.

501

17.1.2.9. Grayscale Image

Gray Scale Image is also called gray order image. The relationship between white and

black is divided into several levels according to the logarithmic relationship, called

grayscale, which is divided into 256 levels in total.

Gray = R ∗ 0.3 + G ∗ 0.59 + B ∗ 0.11

For Example:

17.1.2.10. Mirror

There are two types of image mirroring transformation, horizontal mirroring and vertical

mirroring. Horizontal mirroring takes the vertical centerline of the image as the axis and

swaps the pixels of the image, that is, swapping the left and right halves of the image.

Vertical mirroring takes the horizontal centerline of the image as the axis and swaps the

upper and lower parts of the image.

⚫ Invert along axis x:

⚫ Invert along axis y:

502

⚫ Mirroring of origin:

17.1.2.11. Rotation

Rotation transformation is to change one figure into another figure. During the change

process, all points on the original image change around a fixed point in the same direction

and rotate at the same angle.

17.1.2.12. Scaling

Image scaling is the process of adjusting the size of a digital image.

17.1.2.13. Affine

Affine transformation in space transformation corresponds to five transformations,

translation, scaling, rotation, flipping, and cross-cutting. The process of these five

changes from the original image to the transformed image, which can be described by an

503

affine transformation matrix.

⚫ Cut along with axis x:

⚫ Cut along with axis y:

17.1.2.14. Median Filtering

Median filtering is a nonlinear signal processing technology based on sorting statistical

theory that can effectively suppress noise. The basic principle of median filtering is to

replace the value of a point in a digital image or digital sequence with the values of points

in a neighborhood of that point. Instead of the median value, the surrounding pixel values

are close to the true value, thereby eliminating isolated noise points and having a good

filtering effect on impulse noise. In particular, while filtering out noise, it can protect the

edges of the signal so that it does not be blurred. Principle: it sets the gray value of each

pixel to the median value of the gray value of all pixels in a neighborhood window of that

point.

For example: suppose image F is

Then, filter middle pixel points. All pixels are ordered from small to large: 1, 3, 7, 13, 23, 31,

32, 43, 43

504

17.1.2.15. Mean Filtering

Mean filtering is a typical linear filtering algorithm. Its principle is to replace each pixel

value in the original image with the mean value. Boundaries are treated as elemental

symmetries (see Custom Morphology).

Calculation formula:

m is the total number of pixels in the template including the current pixel.

For Example:

Suppose image F is

Then, filter middle pixel point.

Mean value of all pixels is (2+3+3+5+6+4+9+6+7) / 9 = 5

17.1.2.16. Gaussian Filter

Gaussian filter is a linear smoothing filter, suitable for eliminating Gaussian noise, and is

widely used in the noise reduction process of image processing. Boundaries are treated

as elemental symmetries (see Custom Morphology).

Two-dimensional Gaussian function:

Commonly used 3*3 and 5*5 Gaussian templates are as follows (standard deviation =

1.3):

505

17.1.2.17. Bilateral Filtering

Bilateral filtering is a nonlinear filter that can maintain edges, reduce noise, and smooth.

Bilateral filtering uses a weighted average method. The weighted average of the

brightness values of surrounding pixels is used to represent the intensity of a certain pixel.

The weighted average used is based on Gaussian distribution. The most important thing

is that the weight of bilateral filtering not only considers the Euclidean distance of the

pixel, but also takes the radiation difference in the pixel range domain into account. These

two weights are considered simultaneously when calculating the center pixel.

17.1.2.18. Sobel Edge Detection

The Sobel operator is a discrete differentiation operator mainly used for edge detection.

It combines Gaussian smoothing and differential derivation to calculate the approximate

gradient of the image grayscale function. Using this operator at any point in the image

will produce the corresponding gradient vector or its normal vector.

To detect horizontal transformation, the 3*3 kernel is:

To detect vertical transformation, the 3*3 kernel is:

506

17.1.2.19. SCHARR Filter

Although the Sobel operator can effectively extract image edges, it has a poor effect on

weak edges in the image. Therefore, in order to effectively extract weak edges, the gap

between pixel values needs to be increased, so the Scharr operator is introduced. The

Scharr operator is an enhancement to the difference of the Sobel operator, so the principle

and usage of detecting image edges between the two are the same. The size of the edge

detection filter of the Scharr operator is 3× 3, so it is also called the Scharr filter. The

difference between pixel values can be increased by amplifying the weight coefficient in

the filter. This idea is adopted by the Scharr operator, which is an edge detection operator

in the X and Y directions.

17.1.2.20. Laplacian Edge Detection

Laplacian edge extraction uses the second-order derivative to extract edges, which is an

isotropic edge extraction operator. Isotropy means that using this operator, you can

sharpen the boundaries and lines in any direction without directionality. Like sobel, they

use different operators to extract edges in the x and y directions. This Laplacian operator

has advantages that distinguish it from other first-order differential operators. But its

disadvantage is that it is sensitive to noise compared to first-order differential. It

responds more strongly to isolated pixels than to edges or lines, so it is only suitable for

noise-free images. It is precisely because the Laplacian operator is sensitive to outliers

and noise. Before using the Laplacian operator to extract edges, we first use Gaussian

smoothing of the image. This process is the Laplacian-Gauss (LOG) operator. It combines

the Gaussian smoothing filter and the Laplacian sharpening filter to smooth out the noise

first and then perform edge detection, so the effect will be better.

507

17.1.2.21. Canny Edge Detection

Canny edge detection operator is a multi-level detection algorithm. Proposed by John F.

Canny in 1986, he also proposed three major criteria for edge detection:

⚫ Edge detection with low error rate: the detection algorithm should accurately find as

many edges as possible in the image and reduce missed detections and false

detections as much as possible.

⚫ Optimal positioning: the detected edge point should be accurately positioned at the

center of the edge.

⚫ Any edge in the image should be marked only once, and image noise should not

produce false edges.

The Canny algorithm has been used as a standard edge detection algorithm, since then,

various improved algorithms based on the Canny algorithm have appeared. Now, the

Canny algorithm and its various variants are still an excellent edge detection algorithm.

17.1.2.22. Gradient

The image gradient is used to calculate speed of image changing. For edge part of image,

the grayscale value is with big change, so the gradient value is also big. Generally, image

gradient calculates image edge information. Strictly speaking, image gradient requires

derivative, but it gets approximate value of gradient through calculating pixel deviation

value. The commonly used operators are Sobel, Scharr and Lapacian.

17.1.2.23. Frequency Domain

Frequency domain means analyze function from the angle of function’s frequency, and

the corresponding aspect is time domain. That is, if signals are analyzed from time

domain, the time is horizontal coordinate, amplitude is vertical coordinate. But if from

frequency domain, the coordinates are opposite.

For images, Fourier transform is used to transform the image from the spatial domain to

508

the frequency domain, so the Fourier spectrum characteristics can be used for image

processing.

17.1.2.24. Dilation and Erosion

Image dilation and erosion are two basic morphological operations, which are mainly

used to find maximum and minimum areas in the image.

The expansion is similar to "field expansion", which expands the highlighted area or white

part of the image, and the resulting image is larger than the highlighted area of the original

image.

Corrosion is similar to "area encroachment", which reduces and refines the highlighted

area or white part of the image, and the resulting image is smaller than the highlighted

area of the original image.

17.1.2.25. Opening Operation and Closed Operation

The image opening and closing operations are related to the dilation and erosion

operations, and are composed of operations composed of the compound and set

operations (union, intersection, complement, etc.) of the expansion and erosion

operations.

Opening operation: first erode the image and then dilate it.

Closed operation: first dilate the image and then erode it.

17.1.2.26. Histogram Equalization

Histogram equalization is a typical automatic method to obtain image enhancement by

correcting the histogram of the image. Histogram equalization is mainly used to enhance

the contrast of images with a small dynamic range. The basic idea of this method is to

transform the histogram of the original image into a form that is evenly distributed

509

throughout the entire grayscale range, thereby increasing the dynamic range of pixel

grayscale values and thus achieving enhancement of the overall contrast of the image.

Write the grayscale histogram into a general probability expression:

Among them, n is the total number of pixels in the image. By normalizing the total number

of pixels in the image, each column of the obtained histogram expresses the proportion

of each gray value pixel in the image.

The basic idea of histogram equalization is to transform the histogram of the original

image into a uniformly distributed form. Here, a transformation function needs to be

determined, that is, an enhancement function. This enhancement function needs to meet

two conditions:

➢ It is a single-valued single-increasing function in the range of 0 ≤ f ≤ L − 1. This is to

ensure that the gray levels of the original image still maintain the original order from

black to white (or from white to black) after transformation.

➢ If the equalized image is g(x, y), then 0 ≤ f ≤ L − 1 should be 0 ≤ g ≤ L − 1. This condition

is used to ensure that the dynamic range of the gray value of the image before and

after transformation is consistent.

It can be proved that the functional relationship that satisfies the above two conditions

and can convert the original distribution of f into a uniform distribution in g can be

obtained from the cumulative histogram of the image f(x, y). The transformation from f to

g is

According to the above formula, the gray value of each pixel in the image after histogram

equalization can be directly calculated from the original image histogram.

17.1.2.27. Gamma Transform

Gamma transform is performed on the image. Gamma transform is often used to adjust

510

the contrast of overexposed or underexposed (too dark) grayscale images. The

calculation formula is as follows:

Among them, c and y are positive constants, c is the grayscale scaling coefficient, usually

1. y is the gamma factor size, which controls the scaling degree of the entire

transformation.

17.1.2.28. Grayscale Stretching

Grayscale stretching is also called contrast stretching. It is the most basic grayscale

transformation and uses the simplest piecewise linear transformation function. Its main

idea is to improve the dynamic range of grayscale levels during image processing.

17.1.2.29. Image normalization

Image normalization refers to a series of standard processing transformations on an

image to transform it into a fixed standard form. This standard image is called a

normalized image.

511

17.1.2.30. Image Enhancement

To enhance useful information in an image, it can be a distortion process whose purpose

is to improve the visual effect of the image for the application of a given image.

Purposefully emphasize the overall or local characteristics of the image, that is, make the

original unclear image clear or emphasize some features of interest, then expand the

differences between the features of different objects in the image, suppress uninteresting

features, and improve the image quality, rich information, enhance image interpretation

and recognition effects, to meet the needs of some special analysis.

17.1.2.31. Binarization

Image Binarization is to set the grayscale value of the pixels on the image to 0 or 255,

which is the process of making the entire image appear obviously black and white.

17.1.2.32. Adaptive Binarization

Perform adaptive thresholding on the input image to generate a binary image. The effect

of adaptive thresholding is similar to high-pass filtering an image -- extracting the

contour of the target, and the size of target contour depends on the size of the filter and

the gradient magnitude of the target contour itself.

17.1.2.33. Automatic Binarization

Automatic binarization uses the OTSU. The Otsu algorithm is also called the maximum

inter-class variance method. It is an algorithm that can automatically determine the

threshold in binarization. Then, the foreground and background images can be separated.

512

17.1.3. Matching

17.1.3.1. Shape Matching

Shape-based matching uses the contour shape of the target object to describe the

template. Shape matching is to calculate the similarity or dissimilarity of two shapes

based on shape description and certain judgment criteria. The matching result between

two shapes is represented by a numerical value called shape similarity. The greater the

shape similarity, the more similar the two shapes are. Dissimilarity is also called shape

distance, which is contrary to similarity, the smaller the shape distance, the more similar

the two shapes are.

17.1.3.2. NCC Matching

Based on NCC, it is used to compare the similarity of two images to match the target. And

this is applied in industrial production detection and monitoring, object detection and

identification, and so on. The NCC algorithm can effectively reduce the impact of lighting

on image comparison results.

17.1.3.3. Grayscale Matching

Template matching based on gray value is suitable for detection targets whose gray

changes in the image are relatively stable, noise is relatively small, and gray differences

are obvious. This is a matching method that is not recommended because it is highly

complex, and it can only detect one target at a time, so it is time-consuming, and very

sensitive to lighting and size changes.

513

17.1.4. Measurement

17.1.4.1. Grayscale Projection

Calculate the grayscale projection value in horizontal and vertical direction.

17.1.5. Region

17.1.5.1. Intersection, Union and Difference

Intersection

514

Union

Difference

17.1.5.2. Connected Component

Connected component generally refers to the image area (Region, Blob) composed of

foreground pixels with the same pixel value and adjacent positions in the image.

Connected region analysis (Connected Component Analysis, Connected Component

Labeling) refers to finding and labeling each connected region in the image.

17.1.5.3. Hole Filling

A hole can be defined as a background region surrounded by a border connected by

foreground pixels. Hole filling is based on dilation, complementation and intersection

algorithms. When given a point in each hole, the goal is to fill all the holes with 255.

515

17.1.5.4. Skeletonization

Reduce foreground pixels as much as possible while maintaining the connectivity of the

foreground area of a binary image, and finally obtains the "skeleton" of the image.

17.1.5.5. External Rectangle & Rotate External Rectangle

The minimum external moment of a region parallel to the horizontal axis, that is, the

smallest rectangle parallel to the horizontal axis that can enclose the region.

The minimum external moment of the area. This external moment is with angle, that is,

the smallest rectangle with an angle that can surround the area.

516

17.1.5.6. Convexity

The shape factor of the region - convexity, the area of the region/the area of the convex

hull corresponding to the region. If Fc is the area of the convex hull, and Fo is the original

area of the region, then the convexity C is defined as: C = FO / FC

17.1.5.7. Compactness

The shape factor of the region - compactness. If L is the length of the contour and F is

the area of the region, then the compactness C is defined as:

17.1.5.8. Rectangularity

The rectangularity of a region measures how close a shape is to a rectangle. The

calculation of the rectangularity measure is ultimately based on the calculated area of the

normalized difference between the rectangle and the input area relative to the area of the

rectangle.

517

17.1.6. Recognition

17.1.6.1. Barcode

One-dimensional barcode refers to the arrangement rules of barcode bars and spaces.

Code systems of commonly used one-dimensional code include: EAN code, 39 code,

crossed 25 code, UPC code, 128 code, 93 code, ISBN code, and Codabar etc. A barcode is

a mark composed of a set of regularly arranged bars, spaces and corresponding

characters. The "bar" refers to the part with low light reflectivity, and the "space" refers to

the part with high light reflectivity. The data composed by these bars and spaces

expresses certain information and can be read by the device, then it can be converted into

binary and decimal information compatible with the computer.

QR (Quick Response) code is also called two-dimensional barcode. It is a very popular

encoding method on mobile devices in recent years. It can store more information than

the traditional Bar Code, and more data types can be represented.

17.1.6.2. SVM

Support Vector Machine (SVM) is a type of generalized linear classifier that performs

binary classification of data in a supervised learning manner, whose decision boundary

is the maximum-margin hyperplane that solves the learning sample. SVM uses the hinge

loss function to calculate the empirical risk and adds a regularization term into the

solution system to optimize the structural risk. It is a classifier with sparseness and

robustness. SVM can perform nonlinear classification through the kernel method and is

one of the common kernel learning methods.

17.1.6.3. MLP

MLP Multi-layer Perceptron is a forward-structured artificial neural network ANN that

maps a set of input vectors to a set of output vectors. MLP can be viewed as a directed

graph consisting of multiple layers of nodes, and each layer is fully connected to the next

518

layer. Except for the input node, each node is a neuron with a nonlinear activation function.

The MLP is trained using the supervised learning method of BP backpropagation

algorithm. MLP is a generalization of the perceptron, which overcomes the weakness of

the perceptron that cannot identify linearly inseparable data.

17.1.7. Tool

17.1.7.1. Hough Transform

Hough transformation, transforming the image coordinate system into a parametric

coordinate system according to mathematical expressions (such as straight lines or

circles), points (m points) on the same line or circle will change into lines in the parametric

coordinate system (m lines, several points in the image coordinate system will become

several lines after conversion), these lines will intersect at one point, and then vote in the

parameter coordinate system, the candidate object is obtained through the local

maximum value

⚫ Linear detection

In the rectangular coordinate system, a straight line:

L1: y = a0x + b0

Among them, b0 is the intercept of the straight line, a0 is the slope of the straight line, a0

and b0 are constants, x and y are variables. Assume that a certain point (x0, y0) is on the

straight line L1, there are countless straight lines passing through this point, so it will

correspond to different a and b, in this parameter coordinate system, the point (x0, y0)

becomes a straight line b =− x0a + y0.

In the rectangular coordinate, a and b are variables, x0 and y0 are constants, then the line

L1 can be:

L1: b = -x0a + y0

If a line L1 was converted to parameter coordinate system, it will become one point (a0,

b0).

519

L1: b = -x0a + y0

Under the rectangular coordinate system, assuming that there are M points on the

straight line L1, it will become M straight lines under the parametric coordinate system.

These M straight lines will intersect at a point (a0, b0), and the coordinates of this point

represent L1’s slope and intercept in the rectangular coordinates. Summarizing the above

two transformations, it can be known that points in image space correspond to straight

lines in parameter space one-to-one, and straight lines in image space correspond to

points in parameter space one-to-one.

⚫ Circle detection

For a circle, three parameters are needed to determine a circle (center coordinates and

radius). The standard Hough circle transformation still converts the rectangular

coordinates into a three-dimensional parameter space describing the circle, and then

uses these three dimensions to perform cumulative measurements (voting), and

determines whether it is a circle based on the voting results.

17.1.7.2. Camera Distortion

In actual shooting, camera distortion is a problem that is often encountered, such as

radial distortion, tangential distortion, etc. Radial distortion is divided into pincushion

distortion and barrel distortion, while tangential distortion is generally caused by the lens

not being completely parallel to the image. The shape or process difference of the lens

may also cause a certain degree of image distortion, so it is necessary to obtain the

internal parameters of the camera through calibration and correct the image distortion.

The pinhole camera model is an ideal perspective model. It will obtain near and far images

due to perspective. It will also produce distortion due to lens deviation, that is, geometric

distortion. Unlike keystone distortion caused by perspective changes, geometric

520

distortion is a deformation from the center of the image to the edge. The closer to the

edge, the more severe the distortion will be.

Telecentric lenses will not produce perspective errors due to lens movement, and the

image size will not be affected by the shooting distance. Within a fixed imaging distance

range, the magnification is consistent and the distortion is minimal.

17.1.7.3. Camera Internal and External Parameters

In order to correspond the pixel distance in the image coordinate system to the coordinate

distance in the world coordinate system, it is necessary to know the external parameter

information of the camera and convert its actual distance in the world coordinate system

through the transformation of the coordinate system.

⚫ Internal parameters

The internal camera parameters obtained through calibration describe the characteristics

of the camera used and are generally related to the internal structure of the camera itself.

Internal parameters generally include the focal length of the camera, distortion coefficient,

pixel pitch, center point coordinates, image width and height, etc.

⚫ External parameters

The external parameters of the camera represent the three-dimensional position of the

camera in the world coordinate system, such as the camera's X-axis coordinate, Y-axis

coordinate, Z-axis coordinate, and the camera's orientation (such as the angle of rotation

around the X-axis, Y-axis, Z-axis), etc.

17.1.7.4. Calibration

Camera calibration can establish the correspondence between points in a two-

dimensional image and points in a three-dimensional space. Camera calibration is the

process of obtaining the internal and external parameters of the camera. And accurate

calibration can improve the accuracy of measurement and reduce errors.

521

17.1.8. Defect

17.1.8.1. Smooth Surface Defect Detection

The glossy defect detection system integrates machine vision technology such as

cameras and image processing algorithms to efficiently detect, display and identify

object’s common surface defects (such as holes, damage, edge cracks, scratches, edge

damage, etc.), defects, dirty spots, water and oil drop marks, streaks, missed coatings,

wrinkles, dark spots, bright spots, dust, etc. in real-time, especially suitable for object

production industry that requires appearance strictly and specific index, such as, plastics,

paper, glass, electronics, metal, films, foils, etc., it can be seen the application range is

very wide.

17.2. Camera Parameters

Note: the camera parameters of each camera series will be slightly different. The

following parameters are just examples. If you encounter parameter setting errors, it is

recommended to refer to the corresponding camera SKD to view the parameters.

17.2.1. Hikvision (Area Array)

Parameter Type Parameter Name Description

Command Type “TriggerSoftware”

Under camera soft trigger mode,

set soft trigger command

parameters to trigger camera

shooting, take photo once when

triggered once.

Enumeration

type
“PixelFormat”

Pixel format, the enumeration

value of grayscale image is

522

17301505 or the enumeration

name is "Mono8", the enumeration

value of RGB color image is

35127316 or the enumeration

name is "RGB8".

“LineSelector”

Line selector, select the external

wiring to be configured, that is,

select an external wiring and

configure some properties, such as

configuring the external wiring as

input or output properties. The

enumeration value of external line

Line0 is 0 or the enumeration name

is "Line0", the enumeration value of

external line Line1 is 1 or the

enumeration name is "Line1", the

enumeration value of external line

Line2 is 2 or the enumeration name

is "Line2". For the connection

between camera wiring and

external devices, please refer to the

document "Hikvision Camera IO

Cable Connection Instructions"

“LineMode”

Line mode controls whether the

external wiring is used as an input

or output signal. First use the

"LineSelector" line selector to

select a line, and then use the line

mode to set it as an input or output

523

signal. The enumeration value of

the input signal is 0 or the

enumeration name is "InPut", the

enumeration value of the output

signal is 8 or the enumeration

name is "Strobe".

“TriggerSelector”

Trigger selector is to select the

trigger type for configuration. The

enumeration value of frame trigger

mode is 6 or the enumeration

name is "FrameBurstStart".

“TriggerSource”

Trigger source, that is, the source

of the trigger signal in trigger

mode. The enumeration value of

soft trigger is 7 or the enumeration

name is "Software", the

enumeration value of external

trigger Line0 is 0 or the

enumeration name is "Line0", the

enumeration value of external

trigger Line2 is 2 or the

enumeration name is " Line2”.

“TriggerActivation”

Trigger response mode, that is,

what method to choose for

triggering. The enumeration value

for rising edge triggering is 0 or the

enumeration name is "RisingEdge".

The enumeration value for falling

edge triggering is 1 or the

524

enumeration name is

"FallingEdge".

Boolean Type

“GevGVCPHeartbeatDisable”

Heartbeat packet disable, 1-

enabled, 0-disabled. It is usually

necessary to disable the heartbeat

packet during program debugging.

“AcquisitionFrameRateEnable”

Image acquisition frame rate

enablement, 1-enabled, 0-

disabled, the frame rate can be set

only after enabling it.

“ReverseX”

Horizontal image reversion is

enabled, that is, the image is

flipped left and right with the

vertical axis as the flip axis, 1-

enabled, 0-disabled.

“CammaEnable”

Gamma enable, 1-enabled, 0-

disabled, only after enabling can

the gamma correction operation of

pixel brightness be performed

Integer Type “OffsetX”

The offset in the X direction of the

ROI, that is, the x coordinate of the

upper left corner of the ROI. When

setting "OffsetX", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetX".

525

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“OffsetY”

The offset in the Y direction of the

ROI, that is, the y coordinate of the

upper left corner of the ROI. When

setting "OffsetY", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetY".

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight

“Width”

ROI image’s width. When setting

"Width", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image width in

advance to correctly set "Width".

And different resolution images are

526

with different widths. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“Height”

ROI image’s height. When setting

"Height", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image height in

advance to correctly set "Height".

And different resolution images are

with different heights. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight.

“GevHeartbeatTimeout”
Heartbeat packet timeout, unit ms,

range [1,600000], step size 1

“GevSCPD”

Packet delay controls the delay (in

timestamp counter units) inserted

between each packet. This can be

used as a rough flow control

mechanism if the application or

network infrastructure cannot

527

keep up with packets coming from

the device. Setting the packet

sending delay can indirectly

control the frame rate, range

[1,1000000], step size 1

Floating-Point

Type

“ExposureTime”
Camera exposure time, unit

microsecond (us), range [34, 1e+6]

“TriggerDelay”
Camera trigger delay, unit

microsecond (us), range [0, 1.6e+7]

“ResultingFrameRate”

The maximum frame rate allowed

in the given current area of interest

(default is the whole image),

exposure time and bandwidth, unit

FPS/s. This parameter cannot be

written and can only be read. The

purpose is to view the camera

frames in the current environment.

“AcquisitionFrameRate”

Set the image acquisition frame

rate, unit FPS/s, range [1, 100000].

Before writing this parameter,

"AcquisitionFrameRateEnable"

parameter must be true, then the

parameter can be written

successfully.

“Gamma”

Perform gamma correction on

image pixel brightness, range [0, 4],

< 1, improve image brightness, the

smaller the value, the stronger the

improvement. > 1, compress image

528

brightness, the larger the value, the

stronger the compression. Before

writing this parameter,

"GammaEnable" parameter must

be true, then the parameter can be

written successfully.

17.2.2. Hikvision (Line Array)

Parameter Type Parameter Name Description

Command Type “TriggerSoftware”

Under camera soft trigger mode,

set soft trigger command

parameters to trigger camera

shooting, take photo once when

triggered once.

Enumeration

type

“PixelFormat”

Pixel format, the enumeration

value of grayscale image is

17301505 or the enumeration

name is "Mono8", the enumeration

value of RGB color image is

17301513 or the enumeration

name is "BayerRGB".

“TriggerSelector”

Trigger selector is to select the

trigger type for configuration. The

enumeration value of frame trigger

mode is 6 or the enumeration

name is "FrameBurstStart", and the

enumeration value of row trigger

mode is 9 or the enumeration

529

name is "LineStart".

“TriggerSource”

Trigger source, that is, the source

of the trigger signal in trigger

mode. The enumeration value of

soft trigger is 7 or the enumeration

name is "Software", the

enumeration value of external

trigger Line0 is 0 or the

enumeration name is "Line0", the

enumeration value of external

trigger Line2 is 2 or the

enumeration name is " Line2”.

Boolean Type

“AcquisitionLineRateEnable”
Camera row frequency enable, 1-

enabled, 0-disabled.

“StrobeEnable”

Enable the strobe signal to be

output to the selected line, 1-

enabled, 0-disabled. It will only

take effect when the camera's

external wiring is used as an

output signal after being enabled.

“FrameTimeoutEnable”
Frame timeout enable, 1 – enabled,

0 – disabled.

Integer Type “OffsetX”

The offset in the X direction of the

ROI, that is, the x coordinate of the

upper left corner of the ROI. When

setting "OffsetX", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

530

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetX".

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“OffsetY”

The offset in the Y direction of the

ROI, that is, the y coordinate of the

upper left corner of the ROI. When

setting "OffsetY", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetY".

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight

“Width”

ROI image’s width. When setting

"Width", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

531

increment]) of the image width in

advance to correctly set "Width".

And different resolution images are

with different widths. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“Height”

ROI image’s height. When setting

"Height", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image height in

advance to correctly set "Height".

And different resolution images are

with different heights. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight.

“StrobeLineDuration”

Strobe line output level time, that

is, the level duration of the output

signal line output selected by the

line selector, unit us, [minVal:

maxVal: increment] = [0: 1000000 :

532

1], when the value is 0, the duration

of level output is consistent with

the exposure time by default.

“AcqusitionLineRate”

Set the line frequency of the

camera in Hz, which is the

frequency of scanning lines.

“ResultingLineRate”

The maximum line rate allowed in

the given current area of interest

(default is the whole image),

exposure time and bandwidth, unit

line/s. This parameter cannot be

written and can only be read. The

purpose is to view the camera line

rate in the current environment.

“LineDebouncerTimeNs” Set the row debounce time, unit ns

Floating-Point

Type

“ExposureTime”
Camera exposure time, unit

microsecond (us), range [34, 1e+6]

“TriggerDelay”
Camera trigger delay, unit

microsecond (us), range [0, 1.6e+7]

“ResultingFrameRate”

The maximum frame rate allowed

in the given current area of interest

(default is the whole image),

exposure time and bandwidth, unit

FPS/s. This parameter cannot be

written and can only be read. The

purpose is to view the camera

frames in the current environment.

533

17.2.3. Basler

Parameter Type Parameter Name Description

Command Type “TriggerSoftware”

Under camera soft trigger mode,

set soft trigger command

parameters to trigger camera

shooting, take photo once when

triggered once.

Enumeration

type

“PixelFormat”

Pixel format, the enumeration

signal name of grayscale image is

"Mono8", the enumeration signal

name of RGB color image is

"BayerGB8".

“LineSelector”

Line selector, select the external

wiring to be configured, that is,

select an external wiring and

configure some properties, such as

configuring the external wiring as

input or output properties. The

enumeration name of external

wiring Line1 is "Line1", and the

enumeration name of external

wiring OutputLine1 is

"OutputLine1". Please refer to the

document "basler ace Camera Link

Users Manual" for wiring of camera

and external equipment.

“LineMode”
Line mode controls whether the

external wiring is used as an input

534

or output signal. First use the

"LineSelector" line selector to

select a line, and then use the line

mode to set it as an input or output

signal. The enumeration name of

input signal is "InPut", and the

enumeration name of output signal

is "Output”.

“TriggerMode”

Whether to enable trigger mode,

that is, soft trigger or external

trigger can only be used. The

enumeration name for turning on

trigger mode is "On", the

enumeration name for turning off

trigger mode is "Off".

“TriggerSource”

Trigger source, that is, the source

of the trigger signal in trigger

mode. The enumeration name of

soft trigger is "Software", The

enumeration name of external

trigger Line1 is "Line1".

Boolean Type

“AcquisitionFrameRateEnable”

Image acquisition frame rate

enablement, 1-enabled, 0-

disabled, the frame rate can be set

only after enabling it.

“ReverseX”

Horizontal image reversion is

enabled, that is, the image is

flipped left and right with the

vertical axis as the flip axis, 1-

535

enabled, 0-disabled.

“CammaEnable”

Gamma enable, 1-enabled, 0-

disabled, only after enabling can

the gamma correction operation of

pixel brightness be performed

Integer Type

“OffsetX”

The offset in the X direction of the

ROI, that is, the x coordinate of the

upper left corner of the ROI. When

setting "OffsetX", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetX".

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“OffsetY”

The offset in the Y direction of the

ROI, that is, the y coordinate of the

upper left corner of the ROI. When

setting "OffsetY", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

536

advance to correctly set "OffsetY".

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight

“Width”

ROI image’s width. When setting

"Width", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image width in

advance to correctly set "Width".

And different resolution images are

with different widths. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“Height”

ROI image’s height. When setting

"Height", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image height in

advance to correctly set "Height".

537

And different resolution images are

with different heights. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight.

“GevHeartbeatTimeout”
Heartbeat packet timeout, unit ms,

step size 1

“GevSCPD”

Packet delay controls the delay (in

timestamp counter units) inserted

between each packet. This can be

used as a rough flow control

mechanism if the application or

network infrastructure cannot

keep up with packets coming from

the device. Setting the packet

sending delay can indirectly

control the frame rate, step size 1

Floating-Point

Type

“ExposureTimeAbs”
Camera exposure time, unit

microsecond (us)

“ResultingFrameRateAbs”

The maximum frame rate allowed

in the given current area of interest

(default is the whole image),

exposure time and bandwidth, unit

FPS/s. This parameter cannot be

written and can only be read. The

purpose is to view the camera

frames in the current environment.

538

“AcquisitionFrameRateAbs”

Set the image acquisition frame

rate, unit FPS/s, range [1, 100000].

Before writing this parameter,

“AcquisitionFrameRateEnable”

parameter must be true, then the

parameter can be written

successfully.

“Gamma”

Perform gamma correction on

image pixel brightness, range [0, 4],

< 1, improve image brightness, the

smaller the value, the stronger the

improvement. > 1, compress image

brightness, the larger the value, the

stronger the compression. Before

writing this parameter,

“GammaEnable” parameter must

be true, then the parameter can be

written successfully.

17.2.3.1. Dahua

Parameter Type Parameter Name Description

Command Type “TriggerSoftware”

Under camera soft trigger mode,

set soft trigger command

parameters to trigger camera

shooting, take photo once when

triggered once.

Enumeration

type
“PixelFormat”

Pixel format, the enumeration

value of grayscale image is

539

17301505 or the enumeration

name is "Mono8", the enumeration

value of RGB color image is

35127316 or the enumeration

name is "RGB8Packed".

“LineSelector”

Line selector, select the external

wiring to be configured, that is,

select an external wiring and

configure some properties, such as

configuring the external wiring as

input or output properties. The

enumeration value of external line

Line0 is 0 or the enumeration name

is "Line0", the enumeration value of

external line Line1 is 1 or the

enumeration name is "Line1", the

enumeration value of external line

Line2 is 2 or the enumeration name

is "Line2". For the connection

between camera wiring and

external devices, please refer to the

document "Dahua Camera IO Cable

Connection Instructions"

“LineMode”

Line mode controls whether the

external wiring is used as an input

or output signal. First use the

"LineSelector" line selector to

select a line, and then use the line

mode to set it as an input or output

540

signal. The enumeration value of

the input signal is 0 or the

enumeration name is "InPut", the

enumeration value of the output

signal is 1 or the enumeration

name is "Output".

“AcquisitionMode”

The image acquisition mode

indicates whether the camera

acquires a single frame image or a

continuous frame image. The

enumeration value for obtaining a

single frame image is 1 or the

enumeration name is

"SingleFrame", indicating that the

camera device will only obtain one

frame of image. The enumeration

value for obtaining continuous

frame images is 0 or the

enumeration name is

"Continuous", indicating that the

image will acquire frame image

continuously.

“TriggerMode”

Whether to enable trigger mode,

that is, soft trigger or external

trigger can only be used. The

enumeration value for turning on

trigger mode is 1, or the

enumeration name is “On”. The

enumeration value for turning off

541

trigger mode is 0, or the

enumeration name is “Off”.

“TriggerSource”

Trigger source, that is, the source

of the trigger signal in trigger

mode. The enumeration value of

soft trigger is 0 or the enumeration

name is "Software", the

enumeration value of external

trigger Line1 is 2 or the

enumeration name is "Line1", the

enumeration value of external

trigger Line2 is 3 or the

enumeration name is " Line2”.

Boolean Type

“GevGVCPHeartbeatDisable”

Heartbeat packet disable, 1-

enabled, 0-disabled. It is usually

necessary to disable the heartbeat

packet during program debugging.

“AcquisitionFrameRateEnable”

Image acquisition frame rate

enablement, 1-enabled, 0-

disabled, the frame rate can be set

only after enabling it.

“ReverseX”

Horizontal image reversion is

enabled, that is, the image is

flipped left and right with the

vertical axis as the flip axis, 1-

enabled, 0-disabled.

“ReverseY”

Vertical image reversion is

enabled, that is, the image is

flipped up and down with the

542

horizontal axis as the flip axis, 1-

enabled, 0-disabled.

Integer Type

“OffsetX”

The offset in the X direction of the

ROI, that is, the x coordinate of the

upper left corner of the ROI. When

setting "OffsetX", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetX".

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“OffsetY”

The offset in the Y direction of the

ROI, that is, the y coordinate of the

upper left corner of the ROI. When

setting "OffsetY", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetY".

You need to use the corresponding

SDK software to view it. Note: ROI

543

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight

“Width”

ROI image’s width. When setting

"Width", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image width in

advance to correctly set "Width".

And different resolution images are

with different widths. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“Height”

ROI image’s height. When setting

"Height", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image height in

advance to correctly set "Height".

And different resolution images are

with different heights. You need to

use the corresponding SDK

544

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight.

“GevHeartbeatTimeout”

Heartbeat packet timeout, unit ms,

range [500, 4294967295], step size

1

“GevSCPD”

Packet delay controls the delay (in

timestamp counter units) inserted

between each packet. This can be

used as a rough flow control

mechanism if the application or

network infrastructure cannot

keep up with packets coming from

the device. Setting the packet

sending delay can indirectly

control the frame rate, range [0,

4294967295], step size 1

Floating-Point

Type

“ExposureTime”

Camera exposure time, unit

microsecond (us), range [1,

1000000]

“TriggerDelay”

Camera trigger delay, unit

microsecond (us), range [0,

1000000]

“AcquisitionFrameRate”

Set the image acquisition frame

rate, range [1, 2000]. This

parameter, Before writing

“AcquisitionFrameRateEnable”

parameter must be true, then the

545

parameter can be written

successfully.

“Gamma”

Perform gamma correction on

image pixel brightness, range [0,

3.99998], < 1, improve image

brightness, the smaller the value,

the stronger the improvement. > 1,

compress image brightness, the

larger the value, the stronger the

compression.

17.2.3.2. MindVision

Parameter Type Parameter Name Description

Command Type “TriggerSoftware”

Under camera soft trigger mode,

set soft trigger command

parameters to trigger camera

shooting, take photo once when

triggered once.

Enumeration

type
“PixelFormat”

Pixel format, the enumeration

value of grayscale image is

17301505 or the enumeration

name is “Mono8”, the enumeration

value of RGB color image is

35127316 or the enumeration

name is “RGB8Packed”.

Boolean Type “ReverseX”

Horizontal image reversion is

enabled, that is, the image is

flipped left and right with the

546

vertical axis as the flip axis, 1-

enabled, 0-disabled.

“ReverseY”

Vertical image reversion is

enabled, that is, the image is

flipped up and down with the

horizontal axis as the flip axis, 1-

enabled, 0-disabled.

Integer Type

“OffsetX”

The offset in the X direction of the

ROI, that is, the x coordinate of the

upper left corner of the ROI. When

setting “OffsetX”, you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set “OffsetX”.

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is “OffsetX” +

“Width” < maxValWidth

“OffsetY”

The offset in the Y direction of the

ROI, that is, the y coordinate of the

upper left corner of the ROI. When

setting “OffsetY”, you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

547

value: Maximum value: step

increment]) of the offset in

advance to correctly set “OffsetY”.

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is “OffsetY” +

“Height” < maxValHeight

“Width”

ROI image’s width. When setting

“Width”, you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image width in

advance to correctly set “Width”.

And different resolution images are

with different widths. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is “OffsetX” +

“Width” < maxValWidth

“Height”

ROI image’s height. When setting

“Height”, you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

548

increment]) of the image height in

advance to correctly set “Height”.

And different resolution images are

with different heights. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is “OffsetY” +

“Height” < maxValHeight.

Floating-Point

Type

“ExposureTime”

Camera exposure time, unit

microsecond (us), range [1,

1000000]

“TriggerDelay”

Camera trigger delay, unit

microsecond (us), range [0,

1000000]

“AcquisitionFrameRate”

Set the image acquisition frame

rate, range [1, 2000]. This

parameter, Before writing

“AcquisitionFrameRateEnable”

parameter must be true, then the

parameter can be written

successfully.

17.2.3.3. Do3Think

Parameter Type Parameter Name Description

Command Type “TriggerSoftware”

Under camera soft trigger mode,

set soft trigger command

parameters to trigger camera

549

shooting, take photo once when

triggered once.

Enumeration

type
“PixelFormat”

Pixel format, the enumeration

value of grayscale image is 30, and

the enumeration value of RGB

color image is 10.

Boolean Type

“ReverseX”

Horizontal image reversion is

enabled, that is, the image is

flipped left and right with the

vertical axis as the flip axis, 1-

enabled, 0-disabled.

“ReverseY”

Vertical image reversion is

enabled, that is, the image is

flipped up and down with the

horizontal axis as the flip axis, 1-

enabled, 0-disabled.

Integer Type “OffsetX”

The offset in the X direction of the

ROI, that is, the x coordinate of the

upper left corner of the ROI. When

setting “OffsetX”, you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set “OffsetX”.

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

550

image range, that is “OffsetX” +

“Width” < maxValWidth

“OffsetY”

The offset in the Y direction of the

ROI, that is, the y coordinate of the

upper left corner of the ROI. When

setting “OffsetY”, you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set “OffsetY”.

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is “OffsetY” +

“Height” < maxValHeight

“Width”

ROI image’s width. When setting

“Width”, you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image width in

advance to correctly set “Width”.

And different resolution images are

with different widths. You need to

use the corresponding SDK

software to view it. Note: ROI

551

cannot exceed the maximum

image range, that is “OffsetX” +

“Width” < maxValWidth

“Height”

ROI image’s height. When setting

“Height”, you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image height in

advance to correctly set “Height”.

And different resolution images are

with different heights. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is “OffsetY” +

“Height” < maxValHeight.

Floating-Point

Type

“ExposureTime”
Camera exposure time, unit

microsecond (us).

“TriggerDelay”
Camera trigger delay, unit

microsecond (us).

17.2.3.4. Daheng

Parameter Type Parameter Name Description

Command Type “TriggerSoftware”

Under camera soft trigger mode,

set soft trigger command

parameters to trigger camera

552

shooting, take photo once when

triggered once.

Enumeration

type

“PixelFormat”

Pixel format, the enumeration

value of grayscale image is

17301505, and the enumeration

value of RGB color image is

35127316.

“LineSelector”

Line selector, select the external

wiring to be configured, that is,

select an external wiring and

configure some properties, such as

configuring the external wiring as

input or output properties. The

external line Line0 as the input,

Line1 as the output, Line2 and

Line3 can be as both input and

output. The enumeration value of

Line0 is 1, the enumeration value of

Line1 is 2, the enumeration value of

Line2 is 3, the enumeration value of

Line3 is 4. For the connection

between camera wiring and

external devices, please refer to the

document "Daheng Camera IO

Cable Connection Instructions"

“LineMode”

Line mode controls whether the

external wiring is used as an input

or output signal. First use the

"LineSelector" line selector to

553

select a line, and then use the line

mode to set it as an input or output

signal. The enumeration value of

the input signal is 0, and the

enumeration value of the output

signal is 1.

“TriggerMode”

Whether to enable trigger mode,

that is, soft trigger or external

trigger can only be used. The

enumeration value for turning on

the trigger mode is 1, the

enumeration value for turning off

the trigger mode is 0.

“TriggerSource”

Trigger source, that is, the source

of the trigger signal in trigger

mode. The enumeration value for

closing trigger source is 0, and the

enumeration value for soft trigger

source is 1. Only Line0, Line2,

Line3 can be used as external

trigger source. The enumeration

value of Line0 is 1, the enumeration

value of Line2 is 3, the enumeration

value of Line3 is 4.

Boolean Type “ReverseX”

Horizontal image reversion is

enabled, that is, the image is

flipped left and right with the

vertical axis as the flip axis, 1-

enabled, 0-disabled.

554

“CammaEnable”

Gamma enable, 1-enabled, 0-

disabled, only after enabling can

the gamma correction operation of

pixel brightness be performed

Integer Type

“OffsetX”

The offset in the X direction of the

ROI, that is, the x coordinate of the

upper left corner of the ROI. When

setting "OffsetX", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetX".

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“OffsetY”

The offset in the Y direction of the

ROI, that is, the y coordinate of the

upper left corner of the ROI. When

setting "OffsetY", you need to know

the minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the offset in

advance to correctly set "OffsetY".

555

You need to use the corresponding

SDK software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight

“Width”

ROI image’s width. When setting

"Width", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image width in

advance to correctly set "Width".

And different resolution images are

with different widths. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetX" +

"Width" < maxValWidth

“Height”

ROI image’s height. When setting

"Height", you need to know the

minimum, maximum, and

incremental information ([minVal:

maxVal: increment] = [minimum

value: Maximum value: step

increment]) of the image height in

advance to correctly set "Height".

And different resolution images are

556

with different heights. You need to

use the corresponding SDK

software to view it. Note: ROI

cannot exceed the maximum

image range, that is "OffsetY" +

"Height" < maxValHeight.

“GevHeartbeatTimeout”
Heartbeat packet timeout, unit ms,

range [500, 3600000], step size 1

“GevSCPD”

Packet delay controls the delay (in

timestamp counter units) inserted

between each packet. This can be

used as a rough flow control

mechanism if the application or

network infrastructure cannot

keep up with packets coming from

the device. Setting the packet

sending delay can indirectly

control the frame rate, range [0,

180000], step size 1

Floating-Point

Type

“ExposureTime”

Camera exposure time, unit

microsecond (us), range [36,

1000000]

“TriggerDelay”

Camera trigger delay, unit

microsecond (us), range [0,

3000000]

“AcquisitionFrameRate”
Set the image acquisition frame,

range [1, 10000]

“CurrentAcquisitionFrameRate
Current frame rate, it only can be

obtained, that is, it can’t be set.

557

17.3. Error Codes

Error Code Information Remark

0 Normal OK

8001 Undefined error Undefined error

8002 Assertion error Assert

8003 Null pointer Null pointer

8004 C++ abnormal C++ exception

8005 Std library abnormal C++ exception1

8006 LIB library function execution abnormal Libs error 1

8007 LIB library assertion fails Libs error 2

8008 LIB library function execution error Libs error

8009 SDK abnormal SDK exception

8010 Running timeout Timeout

8011 Zero-division error Divide zero

8012 Array length is not matched Vector size error

8013 Buffer area access out of range Index out of range

8014 Buffer area length is not enough Buffer overflow

8015 Object doesn’t exist Object not exist

8016
Unsupported: Input and output use the

same buffer area
No inplace

8017 Error of ZVOBJECT type creating ZVOBJECT create error

8018 Composite type that cannot be

recognized.
Unknown type

8019 Error when converting multiple byte

characters.

Multiple-byte character

convert error

8020 Error when modifying system parameters System param set error

8021 Error when reading system parameters System param get error

8022 Internal parameters’ values exceed Param value out of range

558

8061
Value exceeds valid range

Value exceeds supported

range

8091 Error of creating thread Thread create error

8092 Error of exiting thread Thread stop error

8093 Error of getting thread handle Thread get id error

8095 Functions are not opened or not achieved Not Implemented

8096 Unsupported function Not supported

8097 Unsupported function Not supported

8099 Unsupported function Not supported

8400 Task parameter buffer area is not enough Task param buffer overflow

8401 Task thread ID out of range Task thread id error

8402 Task function ID out of range Task function id error

8403 Task function is empty Task function null

8404 The number of tasks exceed the max Task thread num error

8420 Task communication creating fails Task link create error

8421 Task communication connection fails Task link error

8422 The number of communication channels

is wrong
Task link channel error

8423 Task message buffer area length is not

enough

Task message buffer

overflow

8424 Task message receiving and sending

sequence No. is not matched

Task message acq no.

unmatch

8425 Error of task message sending Task message send error

8426 Error of task message receiving Task message recv error

8440
The number of ZV types out of range

ZVOBJECT number

exceeded

8441
ZV types are used incorrectly (reused)

ZVOBJECT param cannot be

reused

8480 Memory allocation fails Memory alloc fail

559

8481 The allocated memory is corrupted Memory corrupted

8500 File doesn’t exist File not exist

8501 Error of file opening File open error

8502 Error of file saving File save error

8503 Error of file format File format error

8504 Version can’t be compatible File version incompatible

8505 Error of file reading File read error

8506 Error of file writing File write error

8507 Error of file positioning File seek error

8508 Error of file correction File checksum error

8509 Error of file expansion name File extension error

8510 Path form is not matched Path format error

8511 Path is empty Path is empty

8512 File has been existed File exist

8515 Error of creating directory Create directory error

8516 Error of file finding File Find error

8520 Error of acquisition Camera grab error

8522 Camera scanning index out of range Camera scan id out of range

8523 Camera index out of range Camera id out of range

8524 Unbound camera is selected Camera select unbound

8525 Error of device opening Camera open error

8526 Error of camera scanning Camera scan error

8527 Unsupported camera acquisition image

format
Camera pixel format error

8528 Camera acquisition buffer area is not

enough
Camera cache size error

8529 Camera is not found Camera not found

8530 Acquisition fails Camera grab fail

8531 Camera trigger mode is not matched Camera trigger mode

560

unmatch

8532 Error of camera closing Camera close error

8533 The number of cameras exceeds Camera count exceeds limit

8534 Camera is removed Camera removed

8535 Camera status is unknown Camera unknown

8536 Error of camera resources releasing Camera release error

8537
Error of camera command execution

Camera command execute

error

8538 Error of camera acquisition state Camera not started

8539 Camera can’t be used Camera not Accessible

8551 Camera scanned type is conflict Camera scan type conflict

8560 Unsupported camera parameter

configuration
Camera param undefined

8561 Error of camera parameters reading Camera param read error

8562 Error of camera parameters writing Camera param write error

8563
Camera parameter name length exceeds

Camera param name length

error

8564 Unsupported camera parameter node

types

Camera param node type

error

8565 Camera parameter access mode is not

matched
Camera param access error

8567 Camera parameter values exceed Camera param value error

8568 Camera parameter value types error Camera param type error

8580 Error of camera library loading Camera lib load error

8581
Error of camera library function getting

Camera lib load function

error

8582 Error of camera library format Camera lib format error

8583 The version camera library can’t process Camera lib version error

8584 Error of camera library initialization Camera lib init error

561

loading

8585 Error of camera library uninstalling Camera lib uninit error

8586 Some functions of camera library are

empty

Camera lib function not

found

8587 Camera is being used, camera library

can’t be uninstalled

Camera lib cannot be

removed

8600 Parameters are empty Param null

8601 Parameter 1 is empty Param 1 null

8602 Parameter 2 is empty Param 2 null

8603 Parameter 3 is empty Param 3 null

8604 Parameter 4 is empty Param 4 null

8605 Parameter 5 is empty Param 5 null

8606 Parameter 6 is empty Param 6 null

8607 Parameter 7 is empty Param 7 null

8608 Parameter 7 is empty Param 8 null

8609 Parameter 9 is empty Param 9 null

8620 Error of parameter type Param type error

8621 Error of parameter 1 type Param 1 type error

8622 Error of parameter 2 type Param 2 type error

8623 Error of parameter 3 type Param 3 type error

8624 Error of parameter 4 type Param 4 type error

8625 Error of parameter 5 type Param 5 type error

8626 Error of parameter 6 type Param 6 type error

8627 Error of parameter 7 type Param 7 type error

8628 Error of parameter 8 type Param 8 type error

8629 Error of parameter 9 type Param 9 type error

8640 Parameter out of range Param out of range

8641 Parameter 1 out of range Parameter 1 out of range

8642 Parameter 2 out of range Parameter 2 out of range

562

8643 Parameter 3 out of range Parameter 3 out of range

8644 Parameter 4 out of range Parameter 4 out of range

8645 Parameter 5 out of range Parameter 5 out of range

8646 Parameter 6 out of range Parameter 6 out of range

8647 Parameter 7 out of range Parameter 7 out of range

8648 Parameter 8 out of range Parameter 8 out of range

8649 Parameter 9 out of range Parameter 9 out of range

8650 Parameter 10 out of range Parameter 10 out of range

8651 Parameter 11 out of range Parameter 11 out of range

8652 Parameter 12 out of range Parameter 12 out of range

8653 Parameter 13 out of range Parameter 13 out of range

8654 Parameter 14 out of range Parameter 14 out of range

8655 Parameter 15 out of range Parameter 15 out of range

8656 Parameter 16 out of range Parameter 16 out of range

8657 Parameter 17 out of range Parameter 17 out of range

8658 Parameter 18 out of range Parameter 18 out of range

8659 Parameter 19 out of range Parameter 19 out of range

8700 Size can’t meet requirement Size error

8701 Invalid size Size invalid

8702 Size out of range Empty

8703 Data is empty Format error

8704 Unsupported data format Dim error

8705 Dimension out of range Size unmatch

8706 Input image or matrix size is not matched Only 8-bit gray image

8740 Error of image format, only 8-bit channel

is supported
Image data type unknown

8741 Unsupported or undefined image data

type
Image channel error

8744 Error of image channel numbers Image channel unmatch

563

8745 The number of channels is not matched Image channel unmatch

8746 Error of source image channel numbers Image source channel error

8748 Only support single channel image Only gray image

8749 Image data needs to be aligned Image alignment error

8750 Error of ROI size Image ROI size error

8751 Image data type is not matched Image data type unmatch

8752 Invalid image Image invalid

8753 ROI out of range ROI out of range

8780
Matrix multiplication size is not matched

Matrix multiplication size

mismatch

8781 Matrix is not phalanx Matrix not square

8782 Invalid matrix Matrix invalid

8800 Contours or lengths referenced from

contour sequences are not supported
Contour fixed size

8801 Contour length is zero Contour size error

8802 Contour doesn’t belong to polygon type Contour is not polygon

8803 Contour doesn’t belong to sequence type Contour is not seq

8804 Unsupported contour type Contour type not supported

8810 Invalid element segment Segment element invalid

8830 Region is empty Region empty

8860 List element type is not matched List element type error

8861 Unsupported operation in specialized list Not supported in special list

8862 Variable doesn’t support general list

inserting

Insert not supported for

special element

8863
Unsupported operations of general list

Not supported in common

list

8864 List element is empty List element is NULL

8866 List size can’t be 0 List size error

8870 Element can’t insert 2 lists Inserting two lists is not

564

supported

8900 Unsupported color name Undefined color name

8901 Color value out of range Color value error

8902 Unsupported Marker type Unknown marker type

8903 Error of font structure creating Create font error

8904 Error of font loading Load font error

8940 Filter size exceeds Filter size out of range

8941 Error of filter offset Filter anchor error

8942 Error of filter structure Filter struct error

8970 Error of morphologic type Morph type error

8971 Error of structural element shape Morph shape error

8972 Error of structural element generation Morph kernel create error

8973 Error of structural element Morph kernel error

8974 Error of structural element size Morph kernel size error

9000 Error of feature type Feature type error

9001 Error of feature value calculation Feature value error

9002 Error of moment order number Moment order error

9003 Error of moment type Moment type error

9051 The number of sample points for

matching template is not enough
Edge invalid

9052 Abnormal template data Modul error

9053 Shape template edge extraction fails Extract edge error

9054
Error of auto-threshold value calculation

Auto threshold calculate

error

9055
Error of matrix row numbers matching

Finds parameter matrix rows

error

9056
Error of matrix column numbers matching

Finds parameter matrix cols

error

9057 Error of interpolation data operation Data for interpolate error

565

9090 Template data has not been generated
Shape-model data no

pregenerate

9100 Measurement area and measurement

functions are not matched
Measure type unmatch

9101 Invalid measurement area Measure invalid

9102 The number of measurement points can’t

meet the lowest requirement
Measure points num error

9103 The X coordinate of the fitting point

exceeds the image range
Measure X out of image

9104 The Y coordinate of the fitting point

exceeds the image range
Measure Y out of image

9105 Subregion width exceeds the range Measure sub width error

9106 Error of subregion numbers Measure sub num error

9140 Error of circle measurement Measure circle error

9141 Error of line measurement Measure line error

9150 ocr sample is empty Ocr sample null

9151 Error of ocr sample matching, the number

of samples, sample classification

Ocr classification num not

match

9152 Incorrect feature type Ocr feature type error

9153 Data is empty when extracting feature Ocr feature empty

9154 ocr horizontal projection is empty Ocr char segment error

9155 ocr identifier is empty Ocr null

9156 ocr identifier doesn’t exist Ocr not existence

9157 Invalid ocr Ocr invalid

9158 Error of ocr identifier type Ocr type error

9163 ocr training sample type is not enough
Ocr training sample class

num error

9164 ocr training fails Ocr training fail

9165 ocr sample doesn’t remark Ocr sample not marked

9200 Unsupported barcode type Barcode type unsupport

566

9201 Error of signal configuration, or

configured value exceeds the range
Barcode param invalid

9210
Error of reader related image

Code reader scan image

error

9211 Error of decoder creating Code reader create error

9240 Calibration target point is too less Calib too few points

9241 Error of target point extraction Extract points error

9242 Error of base standard coordinate system

calculation
Calculate Datum CSYS error

9243 Error of base standard coordinate system Datum CSYS error

9244 Error of calibration type Calib type error

9245 Calibration doesn’t support correction Calib unsupport correct

9270 Defect type is not matched Defect type not match

9280 Error of measurement type defect Defect detector type error

9281 Abnormal defect handle measurement

parameters

Defect detector measure

parameter error

9282 Subregion of defect handle measurement

is too less

Defect detector measure

regions error

9500 The number of fitting points is not enough Fitting data error

9501 Error of interpolation value result Interpolation error

9502 Two points of line coincide Coincidence points

9503 Error of transformation matrix Transform matrix error

9504 Error of fitting calculation Fitting calc error

9505 Point set shared line Collinear

9506 The number of valid points is not enough Valid points num error

9507 Error of internal calculation Internal calc error

9508 Point set coincide Coincidence

9509 Line 1 endpoint coincides Not line1

9510 Line 2 endpoint coincides Not line2

567

9950 Error of interface expansion dynamical

library loading
Extension load dll error

9951 Error of interface expansion function

getting

Extension get dll functions

error

9952
Error of interface expansion initialization

Extension execute dll init

error

9953 Interface expansion function is prohibited Extension interface disabled

9954 The interface dependent library version is

incompatible
Extension dll version error

